RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Damage identification of structures by reduction of dynamic matrices using the modified modal strain energy method

        Arefi, Shahin Lale,Gholizad, Amin Techno-Press 2020 Structural monitoring and maintenance Vol.7 No.2

        Damage detection of structures is one of the most important topics in structural health monitoring. In practice, the response is not available at all structural degrees of freedom, and due to the installation of sensors at some degrees of freedom, responses exist only in limited number of degrees of freedom. This paper is investigated the damage detection of structures by applying two approaches, AllDOF and Dynamic Condensation Method (DCM), based on the Modified Modal Strain Energy Method (MMSEBI). In the AllDOF method, mode shapes in all degrees of freedom is available, but in the DCM the mode shapes only in some degrees of freedom are available. Therefore by methods like the DCM, mode shapes are obtained in slave degrees of freedom. So, in the first step, the responses at slave degrees of freedom extracted using the responses at master degrees of freedom. Then, using the reconstructed mode shape and obtaining the modified modal strain energy, the damages are detected. Two standard examples are used in different damage cases to evaluate the accuracy of the mentioned method. The results showed the capability of the DCM is acceptable for low mode shapes to detect the damage in structures. By increasing the number of modes, the AllDOF method identifies the locations of the damage more accurately.

      • KCI등재

        A modified index for damage detection of structures using improved reduction system method

        Shahin Lale Arefi,Amin Gholizad,Seyed Mohammad Seyedpoor 국제구조공학회 2020 Smart Structures and Systems, An International Jou Vol.25 No.1

        The modal strain energy method is one of the efficient methods for detecting damage in the structures. Due to existing some limitations in real-world structures, sensors can only be located on a limited number of degrees of freedom (DOFs) of a structure. Therefore, the mode shape values in all DOFs of structures cannot be measured. In this paper, a modified modal strain energy based index (MMSEBI) is introduced to locate damaged elements of structures when a limited number of sensors are used. The proposed MMSEBI is based on the reconstruction of mode shapes using Improved Reduction System (IRS) method. Therefore, in the first step by employing IRS method, mode shapes in slave degrees of freedom are estimated by those of master degrees of freedom. In the second step, the proposed MMSEBI is used to located damage elements. In order to evaluate the efficiency of the proposed method, two numerical examples are considered under different damage patterns considering the measurement noise. Moreover, the universal threshold based on statistical hypothesis testing principles is applied to damage index values. The results show the effectiveness of the proposed MMSEBI for the structural damage localization when comparing with the available damage index named MESBI. The results demonstrate that the presented method can be used as a practical strategy for structural damage identification, especially when a limited number of sensors are installed on the structure. Finally, the combination of MMSEBI and IRS method can provide a reliable tool to identify the location of damage accurately.

      • KCI등재

        A Proposed Procedure for Progressive Collapse Analysis of Common Steel Building Structures to Blast Loading

        Meysam Bagheri Pourasil,Yaghoub Mohammadi,Amin Gholizad 대한토목학회 2017 KSCE JOURNAL OF CIVIL ENGINEERING Vol.21 No.6

        There is rising concern among researchers regarding the suitability of structural design for abnormal load resistance. Abnormal loading generated by a blast or impact can cause local damage to a structure that could affect the entire structural system. Structures must be designed to prevent such disproportional consequences. Research has focused on progressive collapse analysis of buildings, most of which are based on the alternative path method and the sudden removal of one or several columns. In this procedure, failure of elements adjoining to the removed columns under blast conditions are ignored, which can lead to an incorrect prediction of progressive collapse. The present study developed a procedure for progressive collapse analysis of common steel building structures subject to blast loading. A 3D numerical model for direct simulation of blast loading is proposed to study the real behavior of a 7-story building under blast loading. A blast load equivalent to 1 t of TNT was simulated at a distance of 4 m from the corner of the structure to assess the direct effect on the structure. The pressure of this blast at 4 levels of loading was applied to adjacent structural members and the structural response was examined and the exciting forces in the adjacent structural members of the blast site were compared. The results indicate that the potential for progressive collapse when assuming blast loading as the initial cause of failure will differ from results of common methods used for evaluation of progressive collapse and in methods that ignore the initial reason for progressive collapse.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼