RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCISCIESCOPUS

        Rapid fabrication of highly porous and biocompatible composite textile tubular scaffold for vascular tissue engineering

        Abdal-hay, Abdalla,Memic, Adnan,Hussein, Kamal H.,Oh, Yi Seul,Fouad, Mohamed,Al-Jassir, Fawzi F.,Woo, Heung-Myong,Morsi, Yosry,Mo, Xiumei,Ivanovski, Saš,o Elsevier 2017 European polymer journal Vol.96 No.-

        <P><B>Abstract</B></P> <P>Three dimensional (3D) constructs for vascular tissue engineering applications require scaffolds with highly porous architectures, high biocompatibility and mechanical stability. In this paper, composite fibrous tubular scaffolds composed of different ratios of poly(epsilon-caprolactone) (PCL) and polyamide-6 (PA-6) were simultaneously deposited layer by layer by employing the air jet spinning (AJS) textile technique. Specifically, we report on the optimal parameters for the fabrication of composite porous scaffolds that allow for precise control over the general scaffold architecture, as well as the physical and mechanical properties of the scaffolds. In vitro cell culture study was performed to investigate the influence of polymer composition and scaffold architecture on the adhesion of EA.hy926 human endothelial cells onto the fabricated scaffolds. The cell culture results indicated that a composite scaffold with low PA-6 fibrous content is the most promising substrate for EA.hy926 adhesion and proliferation. Based on the present findings, these highly porous composite tubular constructs support endothelial cell migration and cellular infiltration, and hence represent promising nano-fibrous scaffolds for vascular tissue engineering.</P> <P><B>Highlights</B></P> <P> <UL> <LI> PCL/Nylon 6 dual) fibrous 3D tissue scaffolds were synthesized for vascular grafts. </LI> <LI> Highly and tunable hybrid porous fibrous tissue scaffold was obtained by AJS. </LI> <LI> EA.hy926 EC was sued to determine the biocompatibility of tissue scaffolds. </LI> <LI> Dual scaffold provided a favorable attachment and proliferation of EA.hy926 human EC. </LI> <LI> Dual scaffold at low N6 content induced highest biocompatibility compared to others. </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>[DISPLAY OMISSION]</P>

      • SCISCIESCOPUS

        Biocorrosion and osteoconductivity of PCL/nHAp composite porous film-based coating of magnesium alloy

        Abdal-hay, A.,Amna, T.,Lim, J.K. Elsevier 2013 SOLID STATE SCIENCES Vol.18 No.-

        The present study was aimed at designing a novel porous hydroxyapatite/poly(ε-caprolactone) (nHAp/PCL) hybrid nanocomposite matrix on a magnesium substrate with high and low porosity. The coated samples were prepared using a dip-coating technique in order to enhance the bioactivity and biocompatibility of the implant and to control the degradation rate of magnesium alloys. The mechanical and biocompatible properties of the coated and uncoated samples were investigated and an in vitro test for corrosion was conducted by electrochemical polarization and measurement of weight loss. The corrosion test results demonstrated that both the pristine PCL and nHAp/PCL composites showed good corrosion resistance in SBF. However, during the extended incubation time, the composite coatings exhibited more uniform and superior resistance to corrosion attack than pristine PCL, and were able to survive severe localized corrosion in physiological solution. Furthermore, the bioactivity of the composite film was determined by the rapid formation of uniform CaP nanoparticles on the sample surfaces during immersion in SBF. The mechanical integrity of the composite coatings displayed better performance (~34% higher) than the uncoated samples. Finally, our results suggest that the nHAp incorporated with novel PCL composite membranes on magnesium substrates may serve as an excellent 3-D platform for cell attachment, proliferation, migration, and growth in bone tissue. This novel as-synthesized nHAp/PCL membrane on magnesium implants could be used as a potential material for orthopedic applications in the future.

      • KCI등재

        Effect of Diameters and Alkali Treatment on the Tensile Properties of Date Palm Fiber Reinforced Epoxy Composites

        Abdalla Abdal-hay,임재규,Ngakan Putu Gede Suardana,정도연,최광석 한국정밀공학회 2012 International Journal of Precision Engineering and Vol.13 No.7

        Natural fibers as reinforced polymer composites have recently been the center of attention among researchers. Surface modifications and variations in the fiber diameters are major factors that influence the fiber adhesion performance inside the matrix. Experiments have been performed to further the development of natural fiber reinforced polymers as a replacement for glass fibers. In the present research, date palm fibers (DPFs) with three different size ranges of diameters (800-600, 600-400, and 400-200 μm) and the influence of alkali treatment on their characteristics have been investigated. Morphology observations (SEM), EDS density mapping (quantitative elemental analysis), X-RD, and FTIR spectroscopy of treated and untreated fibers were carried out. In addition, the tensile properties of a single fiber and composites consisting of fibers/epoxy with discontinuous random oriented short fibers both with and without chemical modification were studied. The results showed that DPFs are amenable to chemical modification particularly in the fine fiber case. It was found that the ultimate tensile strength and percentage elongation of a single fiber after alkali treatment increased by 57% and 24.7 %,respectively. Because alkali treatment of the DPFs was able to provide a good adhesion within the matrix, the tensile strength, elastic modulus and the fiber-matrix interaction of the composite were improved. Collectively, the addition of the proposed DPFs may open a new avenue for the exploitation of this natural cheap material to produce a green composite.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼