http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
생분해성 섬유 방사 공정 데이터 특성을 고려한 물성 예측 모델 개발
박세찬 ( Sechan Park ),김덕엽 ( Deok Yeop Kim ),서강복 ( Kang Bok Seo ),이우진 ( Woo Jin Lee ) 한국정보처리학회 2022 한국정보처리학회 학술대회논문집 Vol.29 No.1
최근 노동 집약적인 성격의 섬유 산업에서는 AI를 통해 공정에 들어가는 시간과 비용을 줄이고 품질을 최적화 하려는 시도를 하고 있다. 그러나 섬유 방사 공정은 데이터 수집에 필요한 비용이 크고 체계적인 데이터 처리 시스템이 부족하여 축적된 데이터양이 적다. 또 방사 목적에 따라 특정 변수 위주의 조합에 대한 데이터만을 우선적으로 수집하여 데이터 불균형이 발생하며, 물성 측정환경차이로 인해 동일 방사조건에서 수집된 샘플 간에도 오차가 존재한다. 이러한 데이터 특성들을 고려하지 않고 AI 모델에 활용할 경우 과적합과 성능 저하 등의 문제가 발생할 수 있다. 따라서 본 논문에서는 물성 단위 및 허용오차를 고려한 이상치 처리 기법과 데이터 불균형 정도 및 물성과의 상관성을 고려한 오버샘플링 기법을 물성 예측 모델에 적용한다. 두 기법들을 모델에 적용한 결과 그렇지 않은 모델에 비해 물성 예측 오차와 방사 공정 데이터에 대한 모델의 적합도가 개선됨을 보인다.