RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUS

        Physical test study on double-row long-short composite anti-sliding piles

        Shen, Yongjiang,Wu, Zhijun,Xiang, Zhengliang,Yang, Ming Techno-Press 2017 Geomechanics & engineering Vol.13 No.4

        The double-row long-short composite anti-sliding piles system is an effective way to control the landslides with high thrust. In this study, The double-row long-short composite anti-sliding piles with different load segment length (cantilever length) and different pile row spacing were studied by a series of physical tests, by which the influences of load segment length of rear-row piles as well as pile row spacing on the mechanical response of double-row long-short composite anti-sliding pile system were investigated. Based on the earth pressures in front of and behind the piles obtained during tests, then the maximum bending moments of the fore-row and the rear-row piles were calculated. By ensuring a equal maximum moments in the fore-row and the rear-row piles, the optimum lengths of the rear-row piles of double-row long-short composite system under different piles spacing were proposed. To investigate the validity of the reduced scale tests, the full-scale numerical models of the landside were finally conducted. By the comparisons between the numerical and the physical test results, it could be seen that the reduced scale tests conducted in this study are reliable. The results showed that the double-row long-short composite anti-sliding piles system is effective in the distribution of the landslide thrust to the rear-row and the fore-row piles.

      • SCIESCOPUSKCI등재

        Single nucleotide polymorphism-based analysis of the genetic structure of Liangshan pig population

        Liu, Bin,Shen, Linyuan,Guo, Zhixian,Gan, Mailing,Chen, Ying,Yang, Runling,Niu, Lili,Jiang, Dongmei,Zhong, Zhijun,Li, Xuewei,Zhang, Shunhua,Zhu, Li Asian Australasian Association of Animal Productio 2021 Animal Bioscience Vol.34 No.7

        Objective: To conserve and utilize the genetic resources of a traditional Chinese indigenous pig breed, Liangshan pig, we assessed the genetic diversity, genetic structure, and genetic distance in this study. Methods: We used 50K single nucleotide polymorphism (SNP) chip for SNP detection of 139 individuals in the Liangshan Pig Conservation Farm. Results: The genetically closed conserved population consisted of five overlapping generations, and the total effective content of the population (Ne) was 15. The whole population was divided into five boar families and one non-boar family. Among them, the effective size of each generation subpopulation continuously decreased. However, the proportion of polymorphic markers (P<sub>N</sub>) first decreased and then increased. The average genetic distance of these 139 Liangshan pigs was 0.2823±0.0259, and the average genetic distance of the 14 boars was 0.2723±0.0384. Thus, it can be deduced that the genetic distance changed from generation to generation. In the conserved population, 983 runs of homozygosity (ROH) were detected, and the majority of ROH (80%) were within 100 Mb. The inbreeding coefficient calculated based on ROH showed an average value of 0.026 for the whole population. In addition, the inbreeding coefficient of each generation subpopulation initially increased and then decreased. In the pedigree of the whole conserved population, the error rate of paternal information was more than 11.35% while the maternal information was more than 2.13%. Conclusion: This molecular study of the population genetic structure of Liangshan pig showed loss of genetic diversity during the closed cross-generation reproduction process. It is necessary to improve the mating plan or introduce new outside blood to ensure long-term preservation of Liangshan pig.

      • KCI등재

        Chlorogenic acid accumulation and related gene expression in peach fruit

        Yan Juan,Su Ziwen,Guo Shaolei,Zhang Minghao,Zhang Binbin,Cai Zhixiang,Shen Zhijun,Ma Ruijuan,Yu Mingliang 한국원예학회 2022 Horticulture, Environment, and Biotechnology Vol.63 No.3

        To reveal the molecular mechanism in the accumulation of chlorogenic acids (CGAs) in peach (Prunus persica) fruit during growth and development, CGA contents in the flesh of the three peach cultivars ‘Ruiguang 18’, ‘Heiyoutao’, and ‘Beijingyixianhong’ were determined. The expression levels of CGA metabolism-related genes were analyzed based on transcriptome data (RNA-seq). These candidate genes were then screened and real-time fluorescent quantitative PCR (qRT-PCR) was performed to verify their expression. The results showed that the content of total CGAs, 5-O-caffeoylquinic acid and 3-O-caffeoylquinic acid, in the flesh of ‘Ruiguang 18’ exhibited a decreasing trend during fruit development, and there was a great drop at maturity stage (P < 0.05). The three contents in ‘Heiyoutao’ increased first at stage S2 (P < 0.05) and then decreased significantly (P < 0.05). In ‘Beijingyixianhong’, they stayed stable in the early stages, then total CGAs and 3-O-caffeoylquinic acid decreased significantly at the maturity stage (P < 0.05). RNA-seq transcriptome data analysis and qRT-PCR expression analysis showed that the accumulation of CGAs in fruit flesh was mainly affected by the expression of Prupe.3G100800 (PpHCT) and Prupe.3G107300 (Pp4CL), and their expression levels were highly consistent with total CGA content. Thus, we concluded that Prupe.3G100800 (PpHCT) and Prupe.3G107300 (Pp4CL) are the key genes for CGAs synthesis in peach flesh.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼