RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Evaluation of thermal comfort in air-conditioned rooms based on structure/control-related parameters and data-mining method

        Zhao Shunan,He Lin,Wu Xin,Xu Guowen,Xie Junlong,Cai Shanshan 대한설비공학회 2023 International Journal of Air-Conditioning and Refr Vol.31 No.1

        Evaluating the thermal environment and thermal comfort in an air-conditioned room is an essential for estimating the performance of air-conditioning systems. However, multiple component structures and control-related parameters often lead to a long test cycle and large number of tests, significantly affecting the testing efficiency and speed. To address these problems, in this study, a data-mining method was proposed to predict and evaluate the thermal environment of an air-conditioned room. Owing to the limited amount of experimental data, the sample data were expanded by the simulation data of a collaborative platform between the air-conditioning system and air-conditioned room. Data-mining models, including the support vector regression (SVR), backpropagation (BP), and multiple linear regression (MLR) models, were developed and achieved good accuracy in evaluating the thermal environment by considering air-conditioning systems with various structures and control parameters. In the multiple-input single-output evaluation method, the prediction accuracy of the SVR model was higher than those of the BP and MLR models with respect to the vertical air temperature difference, temperature uniformity, temperature drop rate, and draft rate, while the result was the opposite in terms of the predicted mean vote indices. In the multiple-input multiple-output evaluation method, there was a decline in prediction accuracy and an increase in efficiency prediction compared with multiple-input single-output evaluation.

      • KCI등재

        STUDY ON TRANSIENT FUEL HYDRODYNAMIC FORCE CHARACTERISTICS OF HIGH-SPEED SOLENOID VALVE FOR COMMON RAIL INJECTOR

        Jianhui Zhao,Shunan Zhao,Leonid Grekhov 한국자동차공학회 2020 International journal of automotive technology Vol.21 No.5

        The working process of the high-speed solenoid valve (HSV) of high-pressure common rail (CR) injector has the characteristics of electro-magnetic-mechanical-hydrodynamic multi-physical field coupling. However, most of the research work in this field is carried out without considering hydrodynamic environment of the HSV. Furthermore, the dynamic response characteristics of the transient fuel hydrodynamic force (TFHF) of the HSV should not be neglected. In this study, a three-dimensional finite element method is used to simulate the TFHF between the injector electromagnet and the armature. The results show that cavitation phenomena appears on the lower surface of the armature during the HSV opening process. The faster the armature moves up, the greater the cavitation intensity. Damping holes on the armature can reduce the TFHF acting on the upper surface of the armature; however, the armature structure with straight grooves and damping holes reduces the TFHF more evidently during the HSV opening and the inhibition effect of this structure on cavitation is more evident. The TFHF on the armature decreases with an increase in the depth of the coil groove. However, the selection of the groove depth should be considered together with the optimization of the electromagnetic force characteristics of the HSV.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼