RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • A Novel Face Template Protection Algorithm Based on the Fusion of Chaos Theory and RSA Encryption

        Liu Yunan,Zhao Fudong,Xu Yanli,Cao Yu 보안공학연구지원센터 2016 International Journal of Security and Its Applicat Vol.10 No.6

        In the face recognition system, the protection of the facial feature template has already become the most important part. In view of that the current protection methods cannot meet the security and the matching rate simultaneously, a hybrid encryption algorithm was proposed in this paper fusing chaotic encryption and RSA encryption to solve this problem. After the preprocessing to the ORL face database, the feature template was extracted by 2D2LDA and PCA in the non-transformation domain. Then we applied the scrambling encryption and RSA encryption to obtain the final security template. At last, a system with the nearest neighbor classifier and Euclidean distance was used for the matching verification. The experimental results showed that this hybrid encryption method was feasible, effective and easy transplantation with no matching rate reduction.

      • KCI등재

        Identification and confirmation of 14-3-3 ζ as a novel target of ginsenosides in brain tissues

        Feiyan Chen,Lin Chen,Weifeng Liang,Zhengguang Zhang,Jiao Li,Wan Zheng,Zhu Zhu,Jiapeng Zhu,Yunan Zhao 고려인삼학회 2021 Journal of Ginseng Research Vol.45 No.4

        Background: Ginseng can help regulate brain excitability, promote learning and memory, and resist cerebral ischemia in the central nervous system. Ginsenosides are the major effective compounds of Ginseng, but their protein targets in the brain have not been determined. Methods: We screened proteins that interact with the main components of ginseng (ginsenosides) by affinity chromatography and identified the 14-3-3 ζ protein as a potential target of ginsenosides in brain tissues. Results: Biolayer interferometry (BLI) analysis showed that 20(S)-protopanaxadiol (PPD), a ginseng saponin metabolite, exhibited the highest direct interaction to the 14-3-3 ζ protein. Subsequently, BLI kinetics analysis and isothermal titration calorimetry (ITC) assay showed that PPD specifically bound to the 14-3-3 ζ protein. The cocrystal structure of the 14-3-3 ζ protein-PPD complex showed that the main interactions occurred between the residues R56, R127, and Y128 of the 14-3-3 ζ protein and a portion of PPD. Moreover, mutating any of the above residues resulted in a significant decrease of affinity between PPD and the 14-3-3 ζ protein. Conclusion: Our results indicate the 14-3-3 ζ protein is the target of PPD, a ginsenoside metabolite. Crystallographic and mutagenesis studies suggest a direct interaction between PPD and the 14-3-3 ζ protein. This finding can help in the development of small-molecular compounds that bind to the 14-3-3 ζ protein on the basis of the structure of dammarane-type triterpenoid.

      • SCIESCOPUSKCI등재

        Target engagement of ginsenosides in mild cognitive impairment using mass spectrometry-based drug affinity responsive target stability

        Zhu, Zhu,Li, Ruimei,Qin, Wei,Zhang, Hantao,Cheng, Yao,Chen, Feiyan,Chen, Cuihua,Chen, Lin,Zhao, Yunan The Korean Society of Ginseng 2022 Journal of Ginseng Research Vol.46 No.6

        Background: Mild cognitive impairment (MCI) is a transitional condition between normality and dementia. Ginseng is known to have effects on attenuating cognitive deficits in neurogenerative diseases. Ginsenosides are the main bioactive component of ginseng, and their protein targets have not been fully understood. Furthermore, no thorough analysis is reported in ginsenoside-related protein targets in MCI. Methods: The candidate protein targets of ginsenosides in brain tissues were identified by drug affinity responsive target stability (DARTS) coupled with label-free liquid chromatography-mass spectrometry (LC-MS) analysis. Network pharmacology approach was used to collect the therapeutic targets for MCI. Based on the above-mentioned overlapping targets, we built up a proteineprotein interaction (PPI) network in STRING database and conducted gene ontology (GO) enrichment analysis. Finally, we assessed the effects of ginseng total saponins (GTS) and different ginsenosides on mitochondrial function by measuring the activity of the mitochondrial respiratory chain complex and performing molecular docking. Results: We screened 2526 MCI-related protein targets by databases and 349 ginsenoside-related protein targets by DARTS. On the basis of these 81 overlapping genes, enrichment analysis showed the mitochondria played an important role in GTS-mediated MCI pharmacological process. Mitochondrial function analysis showed GTS, protopanaxatriol (PPT), and Rd increased the activities of complex I in a dose-dependent manner. Molecular docking also predicted the docking pockets between PPT or Rd and mitochondrial respiratory chain complex I. Conclusion: This study indicated that ginsenosides might alleviate MCI by targeting respiratory chain complex I and regulating mitochondrial function, supporting ginseng's therapeutic application in cognitive deficits.

      • SCIESCOPUSKCI등재

        A possible mechanism to the antidepressant-like effects of 20 (S)-protopanaxadiol based on its target protein 14-3-3 ζ

        Chen, Lin,Li, Ruimei,Chen, Feiyan,Zhang, Hantao,Zhu, Zhu,Xu, Shuyi,Cheng, Yao,Zhao, Yunan The Korean Society of Ginseng 2022 Journal of Ginseng Research Vol.46 No.5

        Background: Ginsenosides and their metabolites have antidepressant-like effects, but the underlying mechanisms remain unclear. We previously identified 14-3-3 ζ as one of the target proteins of 20 (S)-protopanaxadiol (PPD), a fully deglycosylated ginsenoside metabolite. Methods: Corticosterone (CORT) was administered repeatedly to induce the depression model, and PPD was given concurrently. The tail suspension test (TST) and the forced swimming test (FST) were used for behavioral evaluation. All mice were sacrificed. Golgi-cox staining, GSK 3β activity assay, and Western blot analysis were performed. In vitro, the kinetic binding analysis with the Biolayer Interferometry (BLI) was used to determine the molecular interactions. Results: TST and FST both revealed that PPD reversed CORT-induced behavioral deficits. PPD also ameliorated the CORT-induced expression alterations of hippocampal Ser9 phosphorylated glycogen synthase kinase 3β (p-Ser9 GSK 3β), Ser133 phosphorylated cAMP response element-binding protein (p-Ser133 CREB), and brain-derived neurotrophic factor (BDNF). Moreover, PPD attenuated the CORT-induced increase in GSK 3β activity and decrease in dendritic spine density in the hippocampus. In vitro, 14-3-3 ζ protein specifically bound to p-Ser9 GSK 3β polypeptide. PPD promoted the binding and subsequently decreased GSK 3β activity. Conclusion: These findings demonstrated the antidepressant-like effects of PPD on the CORT-induced mouse depression model and indicated a possible target-based mechanism. The combination of PPD with the 14-3-3 ζ protein may promote the binding of 14-3-3 ζ to p-GSK 3β (Ser9) and enhance the inhibition of Ser9 phosphorylation on GSK 3β kinase activity, thereby activating the plasticity-related CREBeBDNF signaling pathway.

      • KCI등재

        Discovery and validation of PURA as a transcription target of 20(S)-protopanaxadiol: Implications for the treatment of cognitive dysfunction

        Feiyan Chen,Wenjing Zhang,Shuyi Xu,Hantao Zhang,Lin Chen,Cuihua Chen,Zhu Zhu,Yunan Zhao 고려인삼학회 2023 Journal of Ginseng Research Vol.47 No.5

        Background: 20(S)-protopanaxadiol (PPD), a ginsenoside metabolite, has prominent benefits for thecentral nervous system, especially in improving learning and memory. However, its transcriptionaltargets in brain tissue remain unknown. Methods: In this study, we first used mass spectrometry-based drug affinity responsive target stability(DARTS) to identify the potential proteins of ginsenosides and intersected them with the transcriptionfactor library. Second, the transcription factor PURA was confirmed as a target of PPD by biolayerinterferometry (BLI) and molecular docking. Next, the effect of PPD on the transcriptional levels of targetgenes of PURA in brain tissues was determined by qRT-PCR. Finally, bioinformatics analysis was used toanalyze the potential biological features of these target proteins. Results: The results showed three overlapping transcription factors between the proteomics of DARTSand transcription factor library. BLI analysis further showed that PPD had a higher direct interaction withPURA than parent ginsenosides. Subsequently, BLI kinetic analysis, molecular docking, and mutations inkey amino acids of PURA indicated that PPD specifically bound to PURA. The results of qRT-PCR showedthat PPD could increase the transcription levels of PURA target genes in brain. Finally, bioinformaticsanalysis showed that these target proteins were involved in learning and memory function. Conclusion: The above-mentioned findings indicate that PURA is a transcription target of PPD in brain,and PPD upregulate the transcription levels of target genes related to cognitive dysfunction by bindingPURA, which could provide a chemical and biological basis for the study of treating cognitive impairmentby targeting PURA.

      • KCI등재

        Protein target identifi cation of ginsenosides in skeletal muscle tissues: discovery of natural smallmolecule activators of muscle-type creatine kinase

        Feiyan Chen,Kexuan Zhu,Lin Chen,Liufeng Ouyang,Cuihua Chen,Ling Gu,Yucui Jiang,Zhongli Wang,Zixuan Lin,Qiang Zhang,Xiao Shao,Jianguo Dai,Yunan Zhao 고려인삼학회 2020 Journal of Ginseng Research Vol.44 No.3

        Background: Ginseng effectively reduces fatigue in both animal models and clinical trials. However, themechanism of action is not completely understood, and its molecular targets remain largely unknown. Methods: By screening for proteins that interact with the primary components of ginseng (ginsenosides)in an affinity chromatography assay, we have identified muscle-type creatine kinase (CK-MM) as a potentialtarget in skeletal muscle tissues. Results: Biolayer interferometry analysis showed that ginsenoside metabolites, instead of parent ginsenosides,had direct interaction with recombinant human CK-MM. Subsequently, 20(S)-protopanaxadiol(PPD), which is a ginsenoside metabolite and displayed the strongest interaction with CK-MM in thestudy, was selected as a representative to confirm direct binding and its biological importance. Biolayerinterferometry kinetics analysis and isothermal titration calorimetry assay demonstrated that PPDspecifically bound to human CK-MM. Moreover, the mutation of key amino acids predicted by moleculardocking decreased the affinity between PPD and CK-MM. The direct binding activated CK-MM activityin vitro and in vivo, which increased the levels of tissue phosphocreatine and strengthened the functionof the creatine kinase/phosphocreatine system in skeletal muscle, thus buffering cellular ATP, delayingexercise-induced lactate accumulation, and improving exercise performance in mice. Conclusion: Our results suggest a cellular target and an initiating molecular event by which ginsengreduces fatigue. All these findings indicate PPD as a small molecular activator of CK-MM, which can helpin further developing better CK-MM activators based on the dammarane-type triterpenoid structure.

      • SCIESCOPUSKCI등재

        Protein target identification of ginsenosides in skeletal muscle tissues: discovery of natural small-molecule activators of muscle-type creatine kinase

        Chen, Feiyan,Zhu, Kexuan,Chen, Lin,Ouyang, Liufeng,Chen, Cuihua,Gu, Ling,Jiang, Yucui,Wang, Zhongli,Lin, Zixuan,Zhang, Qiang,Shao, Xiao,Dai, Jianguo,Zhao, Yunan The Korean Society of Ginseng 2020 Journal of Ginseng Research Vol.44 No.3

        Background: Ginseng effectively reduces fatigue in both animal models and clinical trials. However, the mechanism of action is not completely understood, and its molecular targets remain largely unknown. Methods: By screening for proteins that interact with the primary components of ginseng (ginsenosides) in an affinity chromatography assay, we have identified muscle-type creatine kinase (CK-MM) as a potential target in skeletal muscle tissues. Results: Biolayer interferometry analysis showed that ginsenoside metabolites, instead of parent ginsenosides, had direct interaction with recombinant human CK-MM. Subsequently, 20(S)-protopanaxadiol (PPD), which is a ginsenoside metabolite and displayed the strongest interaction with CK-MM in the study, was selected as a representative to confirm direct binding and its biological importance. Biolayer interferometry kinetics analysis and isothermal titration calorimetry assay demonstrated that PPD specifically bound to human CK-MM. Moreover, the mutation of key amino acids predicted by molecular docking decreased the affinity between PPD and CK-MM. The direct binding activated CK-MM activity in vitro and in vivo, which increased the levels of tissue phosphocreatine and strengthened the function of the creatine kinase/phosphocreatine system in skeletal muscle, thus buffering cellular ATP, delaying exercise-induced lactate accumulation, and improving exercise performance in mice. Conclusion: Our results suggest a cellular target and an initiating molecular event by which ginseng reduces fatigue. All these findings indicate PPD as a small molecular activator of CK-MM, which can help in further developing better CK-MM activators based on the dammarane-type triterpenoid structure.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼