RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Protein-based soft micro-optics fabricated by femtosecond laser direct writing

        Sun, Yun-Lu,Dong, Wen-Fei,Niu, Li-Gang,Jiang, Tong,Liu, Dong-Xu,Zhang, Lu,Wang, Ying-Shuai,Chen, Qi-Dai,Kim, Dong-Pyo,Sun, Hong-Bo Nature Publishing Group 2014 Light, science & applications Vol.3 No.1

        <P>In this work, we report a novel soft diffractive micro-optics, called 'microscale kinoform phase-type lens (micro-KPL)', which is fabricated by femtosecond laser direct writing (FsLDW) using bovine serum albumin (BSA) as building blocks and flexible polydimethylsiloxane (PDMS) slices as substrates. By carefully optimizing various process parameters of FsLDW (e. g., average laser power density, scanning step, exposure time on a single point and protein concentration), the as-formed protein micro-KPLs exhibit excellent surface quality, well-defined three-dimensional (3D) geometry and distinctive optical properties, even in relatively harsh operation environments (for instance, in strong acid or base). Laser shaping, imaging and other optical performances can be easily achieved. More importantly, micro-KPLs also have unique flexible and stretchable properties as well as good biocompatibility and biodegradability. Therefore, such protein hydrogel-based micro-optics may have great potential applications, such as in flexible and stretchable photonics and optics, soft integrated optical microsystems and bioimplantable devices.</P>

      • KCI등재

        Osteogenesis and Chondrogenesis of Primary Rabbit Periosteal Cells under Non-uniform 2-Axial Tensile Strain

        Chih-Hao Chiu,Yun-Wen Tong,Jen-Fang Yu,Kin Fong Lei,Alvin Chao-Yu Chen 한국바이오칩학회 2020 BioChip Journal Vol.14 No.4

        Periosteal cells are the major cell sources of skeletal progenitors for fracture callus. In order to promote bone repair and cartilage formation, besides the application of exogenous growth factors, physical stimulation is an alternative approach to guide cell differentiation. Investigation of appropriate conditions is essential for forming bone and cartilage. In this work, a membrane-type micro-system was developed to provide cell culture environment and cell stretching stimulation during culture course. Circular and oval culture wells were designed to respectively generate uniform and non-uniform 2-axial tensile strain for stretching primary rabbit periosteal cells. Cell orientation and differentiation were studied after cycling stretching for 2 days. The cells aligned to the stretching axis with high tensile strain in the oval culture wells; while the cells expressed random orientation in the circular culture wells. Different responses were significantly shown when the cells were respectively stimulated by uniform and non-uniform 2-axial tensile strains. On the other hand, osteogenic differentiation was shown when the cells were under either uniform or non-uniform 2-axial tensile strain. However, only non-uniform 2-axial tensile strain could induce mature osteoblasts. In addition, the result revealed chondrocytes could be differentiated only under a large and nearly single dimensional tensile strain. In summary, differentiation of the periosteal cells is highly influenced by 2-dimensional distribution of the tensile strain. This work provides some in-sights of the control of axial tensile strain for periosteal cell differentiation.

      • KCI등재

        Dynamic Route Choice Behaviour and Simulation-Based Dynamic Traffic Assignment Model for Mixed Traffic Flows

        Ta-Yin Hu,Chee-Chung Tong,Tsai-Yun Liao,Li-Wen Chen 대한토목학회 2018 KSCE JOURNAL OF CIVIL ENGINEERING Vol.22 No.2

        Intelligent Transportation Systems (ITS) focus on increasing the efficiency of existing surface transportation systems through the use of advanced computers, electronics, and communication technologies. In order to perform advanced traffic management and provide travel information, dynamic traffic assignment models need to be developed to provide time-dependent estimates of traffic flows on networks in order to efficiently utilize possible advanced traffic information as well as traffic control measures. Traffic assignment distributes Origin-Destination (OD) trips in a network and determines the flow patterns in a traffic network. This research aims at developing simulation-based algorithm for dynamic traffic assignment problems under mixed traffic flow considerations. Four different physical vehicle types are explicitly considered and modeled, including car, bus, motorcycle, and truck. Four different behavioral rules, pre-specified-path driver, user-equilibrium driver, system-optimization driver, and real-time information driver, are considered in the solution procedure. The DTA algorithm consists of an inner loop that incorporates a direction finding mechanism for the search process for System Optimization (SO) and User Equilibrium (UE) classes based on the simulation results of the current iteration, including experienced vehicular trip times and marginal trip times. In order to understand tripmaker acceptance toward route guidance, a survey is conducted to explore possible behavioral classifications and associated percentages. Numerical experiments are conducted in a test network and a real city network to illustrate the capabilities of the simulation-based DTA procedures, and to observe how system performs under multiple user class’s conditions, including multiple user behavior rules and multiple physical vehicle classes.

      • KCI등재

        Protection Against Helicobacter pylori Infection by a Trivalent Fusion Vaccine Based on a Fragment of Urease B-UreB414

        Li Wang,Xiao-Fei Liu,Shi Yun,Xiao-Peng Yuan,Xu-Hu Mao,Chao Wu,Wei-Jun Zhang,Kai-Yun Liu,Gang Guo,Dong-Shui Lu,Wen-De Tong,Ai-Dong Wen,Quan-Ming Zou 한국미생물학회 2010 The journal of microbiology Vol.48 No.2

        A multivalent fusion vaccine is a promising option for protection against Helicobacter pylori infection. In this study, UreB414 was identified as an antigenic fragment of urease B subunit (UreB) and it induced an antibody inhibiting urease activity. Immunization with UreB414 partially protected mice from H. pylori infection. Furthermore, a trivalent fusion vaccine was constructed by genetically linking heat shock protein A (HspA), H. pylori adhesin A (HpaA), and UreB414, resulting in recombinant HspA-HpaA-UreB414 (rHHU). Its protective effect against H. pylori infection was tested in BALB/c mice. Oral administration of rHHU significantly protected mice from H. pylori infection, which was associated with H. pylori-specific antibody production and Th1/Th2-type immune responses. The results show that a trivalent fusion vaccine efficiently combats H. pylori infection, and that an antigenic fragment of the protein can be used instead of the whole protein to construct a multivalent vaccine.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼