RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Covalently Crosslinked Chitosan-Poly(ethylene glycol) Hybrid Hydrogels to Deliver Insulin for Adipose-Derived Stem Cells Encapsulation

        Huaping Tan,Hekun Luan,Yihang Hu,Xiaohong Hu 한국고분자학회 2013 Macromolecular Research Vol.21 No.4

        Biodegradable hydrogels carrying adipose-derived stem cells (ASCs) have been highlighted with promising potential regarding adipose tissue engineering. In this study, covalently crosslinked natural/synthetic hybrid hydrogels were prepared from methacrylated water soluble chitosan (N-succinyl-chitosan, SCS) and poly(ethylene glycol) (PEG) by photoinitiaing polymerization under the existence of Irgacure 2959 and the irradiation of UV light. The effect of the incorporated PEG on the in vitro morphologies, equilibrium swelling, weight loss and compressive modulus of SCS/PEG hybrid hydrogels in phosphate buffered saline (PBS) at 37 oC were studied. In order to evaluate the ability of hydrogels to effectively deliver the adipogenic factor, insulin was entrapped within hydrogels by copolymerizing methacrylated SCS/PEG. The insulin would be released from the hydrogels into the local microenvironment via the controlled weight ratio of SCS/PEG. Results demonstrated that the hybrid hydrogel with 10 wt%PEG showed a higher efficiency of insulin delivery compared to the control hydrogels. ASCs were seeded into the insulin-loaded SCS/PEG hydrogels in vitro to assess the biological performance and applicability of hydrogels as cell carriers. These characteristics provide potential opportunities for the hybrid SCS/PEG hydrogels as injectable scaffolds in soft tissue engineering applications.

      • KCI등재

        Phenolic composition and neuroprotective effects of the ethyl-acetate fraction from Inonotus sanghuang against H2O2-induced apoptotic cell death of primary cortical neuronal cells

        Kun Liu,Cuilian Qi,Yihang Liu,Huagang Hu,Xuan Xiao,Junpeng Wang,Yaping Huai 한국식품과학회 2022 Food Science and Biotechnology Vol.31 No.9

        The study aimed to characterize phenolic compounds of the Inonotus sanghuang’s ethyl-acetate fraction (EAF) and assess the neuroprotective effect of EAF using the H2O2-treated primary cortical neuronal cells (PCNC) model. Using HPLC-ECD, 5 phenolics were identified and quantified from EAF. H2O2-treated PCNC experiments in vitro showed that pretreatment with EAF increased the GSH-PX and SOD activities and reduced the NO, MDA, and Aβ contents. Furthermore, EAF suppressed the production of IL-1β, IFN-γ, IL-6, and TNF-α in H2O2-treated PCNC. Other mechanisms found that EAF reduced Bax, caspase 9, and caspase 3 expressions at the mRNA and protein levels while increasing Bcl-2 expression at the mRNA and protein levels. These results showed that EAF could serve as potential agents for anti-NDD.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼