RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Improved Multi-target Tracking Algorithm Based on Gaussian Mixture Particle PHD Filter

        Qing Lin,Pei Cao,Dingan Liao,Yongzhao Zhan,Yaping Yang 보안공학연구지원센터 2015 International Journal of Multimedia and Ubiquitous Vol.10 No.2

        The paper proposes Gaussian mixture particle probability hypothesis density filter(PHD) algorithm ,which can effectively solve the problem that the object number is changing or unknown, based on particle PHD filter. This algorithm calculates the object number and state by recursive procedure, avoiding the uncertainty of target state estimation caused by particle sampling and clustering. Gaussian mixture particle is introduced to effectively maintain the multi-modal distribution of each target,reducing the complexity of calculation.

      • KCI등재

        Expression and Characterization of a New L-amino Acid Oxidase AAO Producing α-ketoglutaric Acid from L-glutamic Acid

        Rao Ben,Liao Xianqing,Liu Fang,Chen Wei,Zhou Ronghua,Ma Lixin,Wang YaPing 한국생물공학회 2019 Biotechnology and Bioprocess Engineering Vol.24 No.6

        L-amino acid oxidase (AAO) was reported to be capable of converting L-glutamic acid to α-aketoglutaric acid (α-KG). The sequence of AAO from Kitasatospora cheerisanensis was synthesized based on Pichia pastoris codon-usage preferences. AAO gene was cloned into plasmid pPICZα which was transformed into P. pastoris. Next, multi-copy expression plasmids were constructed by using plasmid pHBM905BDM. High-density fermentation was performed and the recombinant enzyme was characterized. The conversion conditions were optimized. By using Escherichia coli expression system, no soluble or active AAO was obtained from two strains after fermentation and induction. We can’t obtain high-level expression of recombinant strains by using plasmid pPICZα. Therefore, we constructed multi-copy expression plasmids using plasmid pHBM905BDM. By using this plasmid, multi-copy strains were constructed and named as PAAO1, PAAO2, PAAO3, PAAO4, and PAAO5, respectively. The following results showed that expression of AAO in multicopy strains increased as designed and strain PAAO5 was chosen for high-density fermentation and enzyme activity experiments. After high-density fermentation, we achieved an AAO-expression yield of 120.8 U/mL. After temperature and pH optimization, the highest AAO activity was observed at a temperature and pH of 20°C and 6, respectively. After optimization of the conversion conditions, the average production rate of L-glutamic acid to α-KG was 3.46 g/L/h and the highest α-KG titer (103 g/L) was converted from 120 g/L L-glutamic acid. In this study, AAO was abundantly expressed by using P. pastoris expression system. The following experiments indicated that AAO is suitable for use in industrial applications.

      • KCI등재

        High-level Expression of an Acidic and Thermostable Chitosanase in Pichia pastoris Using Multi-copy Expression Strains and High-celldensity Cultivation

        Zhou Ronghua,Liao Xianqing,Liu Fang,Dong Qing,Chen Wei,Wang YaPing,Rao Ben 한국생물공학회 2020 Biotechnology and Bioprocess Engineering Vol.25 No.4

        Chitin is a linear homopolymer of acetylated β- (1,4)-linked glucosamine residues and among the most abundant polysaccharides in the world. Here, we identified and purified a novel chitosanase (CCHA) from Aspergillus oryzae NKY2017 obtained from Hu’bei province in China. Construction of a cDNA library from this strain revealed the gene sequence subsequently expressed in Pichia pastoris and subsequent construction of multi-copy expression plasmids (CCHA1/2/3/4). The results demonstrated elevated levels of CCHA expression in multi-copy strains, with strain CCHA4 chosen for high-density fermentation and enzyme-activity experiments. High-density fermentation achieved a CCHA yield of 22,500 U/mL, and temperature and pH optimization resulted in the highest CCHA activity at 40°C and 4.0, respectively. We used this enzyme for a large-scale preparation of oligosaccharides: 4 g enzyme could convert 150 kg chitosan into oligosaccharides in 24 h at 40°C. These results demonstrated abundant CCHA expression in P. pastoris and suggested the efficacy of CCHA for use in industrial applications.

      • KCI등재

        LncRNA Gm2044 highly expresses in spermatocyte and inhibits Utf1 translation by interacting with Utf1 mRNA

        Ke Hu,Leina Li,Yaping Liao,Meng Liang 한국유전학회 2018 Genes & Genomics Vol.40 No.7

        Spermatogenesis is a process which includes the following phases: spermatogonial stem cell proliferation and differentiation, spermatogonia, spermatocyte, spermatid and mature sperm. Spermatogenic failure is the important factor resulting in male infertility. Recent studies showed that long noncoding RNA (lncRNA) have been found to be involved in the regulation of male reproduction. However, lncRNA associated with spermatogenesis and their mechanisms of action are unclear. The aim of this study is to explore the role and molecular mechanism of lncRNA in spermatogenesis. LncRNA microarray of germ cells and bioinformatic analysis showed lncRNA Gm2044 may play potential roles in spermatogenesis. The expression level of RNA and protein were analyzed by RT-qPCR and western blotting, respectively. The interaction of lncRNA with mRNA was detected by RNA pull down and cellular proliferation was measured using CCK-8 reagent. Testis-enriched lncRNA Gm2044 is abundant in mouse spermatocytes. Gm2044 can suppress the translation of adjacent spermatogenesisrelated gene Utf1 by interacting with Utf1 mRNA. Furthermore, the proliferation of mouse spermatogonia GC-1 cell line and spermatocyte GC-2 cell line was inhibited by Gm2044. CONCLUSION: LncRNA Gm2044 was identified to inhibit Utf1 mRNA translation and play important roles in spermatogenesis.

      • KCI등재

        Efficient Surface Display of L-glutamate Oxidase and L-amino Acid Oxidase on Pichia pastoris Using Multi-copy Expression Strains

        Rao Ben,Zhou Ronghua,Dong Qing,Liao Xianqing,Liu Fang,Chen Wei,Liu Xiaoyan,Min Yong,Wang YaPing 한국생물공학회 2020 Biotechnology and Bioprocess Engineering Vol.25 No.4

        L-glutamate oxidase (GLOD) and L-amino acid oxidase (AAO) were reported to be capable of convert L-glutamic acid to α-aketoglutaric acid (α-KG). These two enzymes gene have been successfully expressed by using pHBM905BDM in Pichia pastoris to produce α-aketoglutaric acid from L-glutamic acid in our previous studies. Here these two enzymes were displayed on P. pastoris to achieve the conversion. We constructed multi-copy expression plasmids using plasmid pHBM905BDM. By using this plasmid, multi-copy strains were constructed and named as PGLOD(1-3)-AGα1 and PAAO(1-3)-AGα1, respectively. The following results showed that expression of GLOD(1-3)- AGα1 and AAO(1-3)-AGα1 in multi-copy strains increased as designed and strain PGLOD3-AGα1 and PAAO3-AGα1 was chosen for high-density fermentation and enzyme activity experiments. By using a multi-copy expression approach and high-density fermentation, we achieved a GLOD expression yield of 688.5 U/g dry cell weight and AAO expression yield of 626.7 U/g dry cell weight. By using displayed GLOD, the average production rate of L-glutamic acid to α-KG was 6.22 g/L/h and the highest α-KG titer (124.5 g/L) was converted from 135 g/L L-glutamic acid. By using displayed AAO, the average production rate of L-glutamic acid to α-KG was 5.78 g/L/h and the highest α-KG titer (115.6 g/L) was converted from 135 g/L L-glutamic acid. It showed that displaying enzymes on P. pastoris are suitable for use in industrial applications.

      • KCI등재

        Numerical analysis of the formation mechanism and suppression method of the reverse flow in a semi-open centrifugal pump

        Like Wang,Jinling Lu,Weili Liao,Wei Wang,Jianjun Feng,Yaping Zhao 대한기계학회 2020 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.34 No.9

        Reverse flow has a detrimental effect on the stable and safe operation of centrifugal pumps. To study the formation mechanism and suppression of the reverse flow, a semi-open centrifugal pump with circumferential groove in the shroud was simulated. Then, the flow field and pressure fluctuation were analysed. The absolute flow angle at the blade inlet nearing the shroud was close to 180° because of the joint action of the leakage flow and blade inlet impact under low flow rate. This phenomenon resulted in the formation of a low-speed region and the reverse flow and low-frequency pressure fluctuation. The circumferential groove provided a channel for the leakage flow, which could quickly pass through the groove, and reduced the absolute flow angle at the blade inlet nearing the shroud and weakened the trend of the tip leakage flow to upstream. The low-frequency pressure pulsation was eliminated, and the amplitude of the blade passing frequency was reduced under 0.7 Q d (Q d is the design flow rate). The reverse flow thickness coefficient became zero with the circumferential groove. The proportion of the reverse flow volume to the volume of inlet pipe decreased from 14.7 % to 2.2 % under 0.4 Q d . This research indicated that the circumferential groove arranged in the shroud could effectively suppress or eliminate reverse flow.

      • KCI등재

        Upregulated lncRNA Gm2044 inhibits male germ cell development by acting as miR-202 host gene

        Meng Liang,Ke Hu,Chaofan He,Jinzhao Zhou,Yaping Liao 한국통합생물학회 2019 Animal cells and systems Vol.23 No.2

        Long non-coding RNAs (lncRNAs) have been found to participate in the regulation of human spermatogenic cell development. However, little is known about the abnormal expression of lncRNAs associated with spermatogenic failure and their molecular mechanisms. Using lncRNA microarray of testicular tissue for male infertility and bioinformatics methods, we identified the relatively conserved lncRNA Gm2044 which may play important roles in non-obstructive azoospermia. The UCSC Genome Browser showed that lncRNA Gm2044 is the miR-202 host gene. This study revealed that lncRNA Gm2044 and miR-202 were significantly increased in nonobstructive azoospermia of spermatogonial arrest. The mRNA and protein levels of Rbfox2, a known direct target gene of miR-202, were regulated by lncRNA Gm2044. Furthermore, the miR- 202-Rbfox2 signalling pathway was shown to mediate the suppressive effects of lncRNA Gm2044 on the proliferation of human testicular embryonic carcinoma cells. Understanding of the molecular signalling pathways for lncRNA-regulated spermatogenesis will provide new clues into the pathogenesis and treatment of patients with male infertility.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼