RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Bacillus amyloliquefaciens and Saccharomyces cerevisiae feed supplements improve growth performance and gut mucosal architecture with modulations on cecal microbiota in red-feathered native chickens

        Lee Tzu Tai,Chou Chung-Hsi,Wang Chinling,Lu Hsuan-Ying,Yang Wen-Yuan 아세아·태평양축산학회 2022 Animal Bioscience Vol.35 No.6

        Objective: The aim of study was to investigate the effects of in-feed supplementation of Bacillus amyloliquefaciens (BA) and Saccharomyces cerevisiae (SC) on growth performance, gut integrity, and microbiota modulations in red-feathered native chickens (RFCs). Methods: A total of 18,000 RFCs in a commercial farm were evenly assigned into two dietary treatments (control diet; 0.05% BA and 0.05% SC) by randomization and raised for 11 weeks in two separate houses. Fifty RFCs in each group were randomly selected and raised in the original house with the partition for performance evaluations at the age of 9 and 11 weeks. Six non-partitioned RFCs per group were randomly selected for analyses of intestinal architecture and 16S rRNA metagenomics. Results: Feeding BA and SC increased the body weight and body weight gain, significantly at the age of 11 weeks (p<0.05). The villus height/crypt ratio in the small intestines and Firmicutes to Bacteroidetes ratio were also notably increased (p<0.05). The supplementation did not disturb the microbial community structure but promote the featured microbial shifts characterized by the significant increments of Bernesiella, Prevotellaceae_NK3B31_group, and Butyrucimonas, following remarkable decrements of Bacteroides, Rikenellaceae_RC9_ gut_group, and Succinatimonas in RFCs with growth benefits. Besides, functional pathways of peptidoglycan biosynthesis, nucleotide excision repair, glycolysis/gluconeogenesis, and aminoacyl transfer ribonucleic acid (tRNA) biosynthesis were significantly promoted (p< 0.05). Conclusion: In-feed supplementation of BA and SC enhanced the growth performance, improved mucosal architectures in small intestines, and modulated the cecal microbiota and metabolic pathways in RFCs. Objective: The aim of study was to investigate the effects of in-feed supplementation of Bacillus amyloliquefaciens (BA) and Saccharomyces cerevisiae (SC) on growth performance, gut integrity, and microbiota modulations in red-feathered native chickens (RFCs).Methods: A total of 18,000 RFCs in a commercial farm were evenly assigned into two dietary treatments (control diet; 0.05% BA and 0.05% SC) by randomization and raised for 11 weeks in two separate houses. Fifty RFCs in each group were randomly selected and raised in the original house with the partition for performance evaluations at the age of 9 and 11 weeks. Six non-partitioned RFCs per group were randomly selected for analyses of intestinal architecture and 16S rRNA metagenomics.Results: Feeding BA and SC increased the body weight and body weight gain, significantly at the age of 11 weeks (p<0.05). The villus height/crypt ratio in the small intestines and Firmicutes to Bacteroidetes ratio were also notably increased (p<0.05). The supplementation did not disturb the microbial community structure but promote the featured microbial shifts characterized by the significant increments of Bernesiella, Prevotellaceae_NK3B31_group, and Butyrucimonas, following remarkable decrements of Bacteroides, Rikenellaceae_RC9_gut_group, and Succinatimonas in RFCs with growth benefits. Besides, functional pathways of peptidoglycan biosynthesis, nucleotide excision repair, glycolysis/gluconeogenesis, and aminoacyl transfer ribonucleic acid (tRNA) biosynthesis were significantly promoted (p<0.05).Conclusion: In-feed supplementation of BA and SC enhanced the growth performance, improved mucosal architectures in small intestines, and modulated the cecal microbiota and metabolic pathways in RFCs.

      • KCI등재

        Comparative global immune-related gene profiling of somatic cells, human pluripotent stem cells and their derivatives: implication for human lymphocyte proliferation

        Chia-Eng Wu,Chen-Wei Yu,Kai-Wei Chang,Wen-Hsi Chou,Chen-Yu Lu,Elisa Ghelfi,Fang-Chun Wu,Pey-Shynan Jan,Mei-Chi Huang,Patrick Allard,Shau-Ping Lin,Hong-Nerng Ho,Hsin-Fu Chen 생화학분자생물학회 2017 Experimental and molecular medicine Vol.49 No.-

        Human pluripotent stem cells (hPSCs), including embryonic stem cells (ESCs) and induced PSCs (iPSCs), represent potentially unlimited cell sources for clinical applications. Previous studies have suggested that hPSCs may benefit from immune privilege and limited immunogenicity, as reflected by the reduced expression of major histocompatibility complex class-related molecules. Here we investigated the global immune-related gene expression profiles of human ESCs, hiPSCs and somatic cells and identified candidate immune-related genes that may alter their immunogenicity. The expression levels of global immune-related genes were determined by comparing undifferentiated and differentiated stem cells and three types of human somatic cells: dermal papilla cells, ovarian granulosa cells and foreskin fibroblast cells. We identified the differentially expressed genes CD24, GATA3, PROM1, THBS2, LY96, IFIT3, CXCR4, IL1R1, FGFR3, IDO1 and KDR, which overlapped with selected immune-related gene lists. In further analyses, mammalian target of rapamycin complex (mTOR) signaling was investigated in the differentiated stem cells following treatment with rapamycin and lentiviral transduction with specific short-hairpin RNAs. We found that the inhibition of mTOR signal pathways significantly downregulated the immunogenicity of differentiated stem cells. We also tested the immune responses induced in differentiated stem cells by mixed lymphocyte reactions. We found that CD24- and GATA3-deficient differentiated stem cells including neural lineage cells had limited abilities to activate human lymphocytes. By analyzing the transcriptome signature of immune-related genes, we observed a tendency of the hPSCs to differentiate toward an immune cell phenotype. Taken together, these data identify candidate immune-related genes that might constitute valuable targets for clinical applications.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼