RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Proteomic analysis reveals the temperature-dependent presence of extracytoplasmic peptidases in the biofilm exoproteome of Listeria monocytogenes EGD-e

        Lee Yue-Jia,Wang Chinling 한국미생물학회 2020 The journal of microbiology Vol.58 No.9

        The foodborne pathogen Listeria monocytogenes resists environmental stresses by forming biofilms. Because this pathogen transmits between the environment and the host, it must adapt to temperature as an environmental stress. In this study, we aimed to identify which proteins were present depending on the temperature in the biofilms of L. monocytogenes EGD-e. Proteins in the supernatants of biofilms formed at 25°C and 37°C were compared using two-dimensional gel electrophoresis and liquid chromatography with tandem mass spectrometry. The larger number of extracytoplasmic proteins associated with cell wall/membrane/envelop biogenesis was identified from the supernatant of biofilms formed at 25°C (7) than those at 37°C (0). Among the 16 extracytoplasmic proteins detected only at 25°C, three were peptidases, namely Spl, Cwh, and Lmo0186. Moreover, mRNA expression of the three peptidases was higher at 25°C than at 37°C. Interestingly, this adaptation of gene expression to temperature was present in sessile cells but not in dispersed cells. After inhibiting the activity of extracytoplasmic peptidases with a protease inhibitor, we noted that the levels of biofilm biomass increased with higher concentrations of the protease inhibitor only when L. monocytogenes grew biofilms at 25°C and not at 37°C. Overall, our data suggest an effect of temperature on the presence of peptidases in L. monocytogenes biofilms. Additionally, increasing the levels of extracytoplasmic peptidases in biofilms is likely a unique feature for sessile L. monocytogenes that causes a naturally occurring breakdown of biofilms and facilitates the pathogen exiting biofilms and disseminating into the environment.

      • KCI등재

        Bacillus amyloliquefaciens and Saccharomyces cerevisiae feed supplements improve growth performance and gut mucosal architecture with modulations on cecal microbiota in red-feathered native chickens

        Lee Tzu Tai,Chou Chung-Hsi,Wang Chinling,Lu Hsuan-Ying,Yang Wen-Yuan 아세아·태평양축산학회 2022 Animal Bioscience Vol.35 No.6

        Objective: The aim of study was to investigate the effects of in-feed supplementation of Bacillus amyloliquefaciens (BA) and Saccharomyces cerevisiae (SC) on growth performance, gut integrity, and microbiota modulations in red-feathered native chickens (RFCs). Methods: A total of 18,000 RFCs in a commercial farm were evenly assigned into two dietary treatments (control diet; 0.05% BA and 0.05% SC) by randomization and raised for 11 weeks in two separate houses. Fifty RFCs in each group were randomly selected and raised in the original house with the partition for performance evaluations at the age of 9 and 11 weeks. Six non-partitioned RFCs per group were randomly selected for analyses of intestinal architecture and 16S rRNA metagenomics. Results: Feeding BA and SC increased the body weight and body weight gain, significantly at the age of 11 weeks (p<0.05). The villus height/crypt ratio in the small intestines and Firmicutes to Bacteroidetes ratio were also notably increased (p<0.05). The supplementation did not disturb the microbial community structure but promote the featured microbial shifts characterized by the significant increments of Bernesiella, Prevotellaceae_NK3B31_group, and Butyrucimonas, following remarkable decrements of Bacteroides, Rikenellaceae_RC9_ gut_group, and Succinatimonas in RFCs with growth benefits. Besides, functional pathways of peptidoglycan biosynthesis, nucleotide excision repair, glycolysis/gluconeogenesis, and aminoacyl transfer ribonucleic acid (tRNA) biosynthesis were significantly promoted (p< 0.05). Conclusion: In-feed supplementation of BA and SC enhanced the growth performance, improved mucosal architectures in small intestines, and modulated the cecal microbiota and metabolic pathways in RFCs. Objective: The aim of study was to investigate the effects of in-feed supplementation of Bacillus amyloliquefaciens (BA) and Saccharomyces cerevisiae (SC) on growth performance, gut integrity, and microbiota modulations in red-feathered native chickens (RFCs).Methods: A total of 18,000 RFCs in a commercial farm were evenly assigned into two dietary treatments (control diet; 0.05% BA and 0.05% SC) by randomization and raised for 11 weeks in two separate houses. Fifty RFCs in each group were randomly selected and raised in the original house with the partition for performance evaluations at the age of 9 and 11 weeks. Six non-partitioned RFCs per group were randomly selected for analyses of intestinal architecture and 16S rRNA metagenomics.Results: Feeding BA and SC increased the body weight and body weight gain, significantly at the age of 11 weeks (p<0.05). The villus height/crypt ratio in the small intestines and Firmicutes to Bacteroidetes ratio were also notably increased (p<0.05). The supplementation did not disturb the microbial community structure but promote the featured microbial shifts characterized by the significant increments of Bernesiella, Prevotellaceae_NK3B31_group, and Butyrucimonas, following remarkable decrements of Bacteroides, Rikenellaceae_RC9_gut_group, and Succinatimonas in RFCs with growth benefits. Besides, functional pathways of peptidoglycan biosynthesis, nucleotide excision repair, glycolysis/gluconeogenesis, and aminoacyl transfer ribonucleic acid (tRNA) biosynthesis were significantly promoted (p<0.05).Conclusion: In-feed supplementation of BA and SC enhanced the growth performance, improved mucosal architectures in small intestines, and modulated the cecal microbiota and metabolic pathways in RFCs.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼