RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCOPUSKCI등재

        Protective Effect Against Hydroxyl Radical-induced DNA Damage and Antioxidant Mechanism of [6]-gingerol: A Chemical Study

        Lin, Jing,Li, Xican,Chen, Li,Lu, Weizhao,Chen, Xianwen,Han, Lu,Chen, Dongfeng Korean Chemical Society 2014 Bulletin of the Korean Chemical Society Vol.35 No.6

        [6]-Gingerol is known as the major bioactive constituent of ginger. In the study, it was observed to effectively protect against ${\bullet}OH$-induced DNA damage ($IC_{50}$ $328.60{\pm}24.41{\mu}M$). Antioxidant assays indicated that [6]-gingerol could efficiently scavenge various free radicals, including ${\bullet}OH$ radical ($IC_{50}$ $70.39{\pm}1.23{\mu}M$), ${\bullet}O_2{^-}$ radical ($IC_{50}$ $228.40{\pm}9.20{\mu}M$), $DPPH{\bullet}$radical ($IC_{50}$ $27.35{\pm}1.44{\mu}M$), and $ABTS{^+}{\bullet}$radical ($IC_{50}$ $2.53{\pm}0.070{\mu}M$), and reduce $Cu^{2+}$ ion ($IC_{50}$ $11.97{\pm}0.68{\mu}M$). In order to investigate the possible mechanism, the reaction product of [6]-gingerol and $DPPH{\bullet}$ radical was further measured using HPLC combined mass spectrometry. The product showed a molecular ion peak at m/z 316 $[M+Na]^+$, and diagnostic fragment loss (m/z 28) for quinone. On this basis, it can be concluded that: (i) [6]-gingerol can effectively protect against ${\bullet}OH$-induced DNA damage; (ii) a possible mechanism for [6]-gingerol to protect against oxidative damage is ${\bullet}OH$ radical scavenging; (iii) [6]-gingerol scavenges ${\bullet}OH$ radical through hydrogen atom ($H{\bullet}$) transfer (HAT) and sequential electron (e) proton transfer (SEPT) mechanisms; and (iv) both mechanisms make [6]-gingerol be oxidized to semi-quinone or quinone forms.

      • KCI등재

        Protective Effect Against Hydroxyl Radical-induced DNA Damage and Antioxidant Mechanism of [6]-gingerol: A Chemical Study

        Jing Lin,Xican Li,Li Chen,Weizhao Lu,Xianwen Chen,Lu Han,Dongfeng Chen 대한화학회 2014 Bulletin of the Korean Chemical Society Vol.35 No.6

        [6]-Gingerol is known as the major bioactive constituent of ginger. In the study, it was observed to effectively protect against •OH-induced DNA damage (IC50 328.60 ± 24.41 μM). Antioxidant assays indicated that [6]- gingerol could efficiently scavenge various free radicals, including •OH radical (IC50 70.39 ± 1.23 μM), •O2 − radical (IC50 228.40 ± 9.20 μM), DPPH• radical (IC50 27.35 ± 1.44 μM), and ABTS+• radical (IC50 2.53 ± 0.070 μM), and reduce Cu2+ ion (IC50 11.97 ± 0.68 μM). In order to investigate the possible mechanism, the reaction product of [6]-gingerol and DPPH• radical was further measured using HPLC combined mass spectrometry. The product showed a molecular ion peak at m/z 316 [M+Na]+, and diagnostic fragment loss (m/z 28) for quinone. On this basis, it can be concluded that: (i) [6]-gingerol can effectively protect against •OH-induced DNA damage; (ii) a possible mechanism for [6]-gingerol to protect against oxidative damage is •OH radical scavenging; (iii) [6]-gingerol scavenges •OH radical through hydrogen atom (H•) transfer (HAT) and sequential electron (e) proton transfer (SEPT) mechanisms; and (iv) both mechanisms make [6]-gingerol be oxidized to semi-quinone or quinone forms.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼