RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Comparative color and surface parameters of current esthetic restorative CAD/CAM materials

        Egilmez, Ferhan,Ergun, Gulfem,Cekic-Nagas, Isil,Vallittu, Pekka Kalevi,Lassila, Lippo Veli Juhana The Korean Academy of Prosthodonitics 2018 The Journal of Advanced Prosthodontics Vol.10 No.1

        PURPOSE. The purpose of this study was to derive and compare the inherent color (hue angle, chroma), translucency ($TP_{SCI}$), surface gloss (${\Delta}E^*_{SCE-SCI}$), and surface roughness ($R_a$) amongst selected shades and brands of three hybrid CAD/CAM blocks [GC Cerasmart (CS); Lava Ultimate (LU); Vita Enamic (VE)]. MATERIALS AND METHODS. The specimens (N = 225) were prepared into square-shaped ($12{\times}12mm^2$) with different thicknesses and shades. The measurements of color, translucency, and surface gloss were performed by a reflection spectrophotometer. The surface roughness and surface topography were assessed by white light interferometry. RESULTS. Results revealed that hue and chroma values were influenced by the material type, material shade, and material thickness (P < .001). The order of hue angle amongst the materials was LU > CS > VE, whereas the order of chroma was VE > CS > LU. $TP_{SCI}$ results demonstrated a significant difference in terms of material types and material thicknesses ($P{\leq}.001$). $TP_{SCI}$ values of the tested materials were ordered as LU > CS > VE. ${\Delta}E^*_{SCE-SCI}$ and $R_a$ results were significantly varied amongst the materials (P < .001) and amongst the shades (P < .05). The order of ${\Delta}E^*_{SCE-SCI}$ amongst the materials were as follows $LU>VE{\geq}CS$, whereas the order of $R_a$ was $CS{\geq}VE>LU$. CONCLUSION. Nano-ceramic and polymer-infiltrated-feldspathic ceramic-network CAD/CAM materials exhibited different optical, inherent color and surface parameters.

      • Polymer matrix of fiber-reinforced composites: Changes in the semi-interpenetrating polymer network during the shelf life

        Khan, Aftab A.,Al-Kheraif, Abdulaziz A.,Al-Shehri, Abdullah M.,,ilynoja, Eija,Vallittu, Pekka K. Elsevier 2018 Journal of the mechanical behavior of biomedical m Vol.78 No.-

        <P><B>Abstract</B></P> <P>This laboratory study was aimed to characterize semi-interpenetrating polymer network (semi-IPN) of fiber-reinforced composite (FRC) prepregs that had been stored for up to two years before curing. Resin impregnated prepregs of everStick C&B (StickTech-GC, Turku, Finland) glass FRC were stored at 4°C for various lengths of time, <I>i.e.</I>, two-weeks, 6-months and 2-years. Five samples from each time group were prepared with a light initiated free radical polymerization method, which were embedded to its long axis in self-curing acrylic. The nanoindentation readings on the top surface toward the core of the sample were made for five test groups, which were named as “stage 1–5”. To evaluate the nanohardness and modulus of elasticity of the polymer matrix, a total of 4 slices (100µm each) were cut from stage 1 to stage 5. Differences in nanohardness values were evaluated with analysis of variance (ANOVA), and regression model was used to develop contributing effect of the material's different stages to the total variability in the nanomechanical properties. Additional chemical and thermal characterization of the polymer matrix structure of FRC was carried out. It was hypothesized that time of storage may have an influence on the semi-IPN polymer structure of the cured FRC. The two-way ANOVA test revealed that the storage time had no significant effect on the nanohardness of FRC (p = 0.374). However, a highly significant difference in nanohardness values was observed between the different stages of FRC (P<0.001). The regression coefficient suggests nanohardness increased on average by 0.039GPa for every storage group. The increased nanohardness values in the core region of 6-months and 2-years stored prepregs might be due to phase-segregation of components of semi-IPN structure of FRC prepregs before their use. This may have an influence to the surface bonding properties of the cured FRC.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼