RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Laboratory evidence of organic peroxide and peroxyhemiacetal formation in the aqueous phase and implications for aqueous OH

        Lim, Y. B.,Turpin, B. J. Copernicus GmbH 2015 Atmospheric Chemistry and Physics Vol.15 No.22

        <P>Abstract. Aqueous chemistry in atmospheric waters (e.g., cloud droplets or wet aerosols) is considered a potentially important atmospheric pathway to produce secondary organic aerosol (SOAaq). Water-soluble organic compounds with small carbon numbers (C2-C3) are precursors for SOAaq; products include organic acids, organic sulfates, and high-molecular-weight compounds/oligomers. Fenton reactions and the uptake of gas-phase OH radicals are considered to be the major oxidant sources for aqueous organic chemistry. However, the sources and availability of oxidants in atmospheric waters are not well understood. The degree to which OH is produced in the aqueous phase affects the balance of radical and non-radical aqueous chemistry, the properties of the resulting aerosol, and likely its atmospheric behavior. This paper demonstrates organic peroxide formation during aqueous photooxidation of methylglyoxal using ultra-high-resolution Fourier transform ion cyclotron resonance electrospray ionization mass spectrometry (FTICR-MS). Organic peroxides are known to form through gas-phase oxidation of volatile organic compounds. They contribute secondary organic aerosol (SOA) formation directly by forming peroxyhemiacetals and epoxides (i.e., IEPOX), and indirectly by enhancing gas-phase oxidation through OH recycling. We provide simulation results of organic peroxide/peroxyhemiacetal formation in clouds and wet aerosols and discuss organic peroxides as a source of condensed-phase OH radicals and as a contributor to aqueous SOA. </P>

      • Photochemical organonitrate formation in wet aerosols

        Lim, Yong Bin,Kim, Hwajin,Kim, Jin Young,Turpin, Barbara J. Copernicus GmbH 2016 Atmospheric Chemistry and Physics Vol.16 No.19

        <P>Abstract. Water is the most abundant component of atmospheric fine aerosol. However, despite rapid progress, multiphase chemistry involving wet aerosols is still poorly understood. In this work, we report results from smog chamber photooxidation of glyoxal- and OH-containing ammonium sulfate or sulfuric acid particles in the presence of NOx and O3 at high and low relative humidity. Particles were analyzed using ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). During the 3 h irradiation, OH oxidation products of glyoxal that are also produced in dilute aqueous solutions (e.g., oxalic acids and tartaric acids) were formed in both ammonium sulfate (AS) aerosols and sulfuric acid (SA) aerosols. However, the major products were organonitrogens (CHNO), organosulfates (CHOS), and organonitrogen sulfates (CHNOS). These were also the dominant products formed in the dark chamber, indicating non-radical formation. In the humid chamber (> 70 % relative humidity, RH), two main products for both AS and SA aerosols were organonitrates, which appeared at m ∕ z− 147 and 226. They were formed in the aqueous phase via non-radical reactions of glyoxal and nitric acid, and their formation was enhanced by photochemistry because of the photochemical formation of nitric acid via reactions of peroxy radicals, NOx and OH during the irradiation. </P>

      • KCI등재

        Source Proximity and Meteorological Effects on Residential Ambient Concentrations of PM<sub>2.5</sub>, Organic Carbon, Elemental Carbon, and p-PAHs in Houston and Los Angeles, USA

        ( Jaymin Kwon ),( Clifford P. Weisel ),( Maria T. Morandi ),( Thomas H. Stock ),( Barbara Turpin ) 한국환경과학회 2016 한국환경과학회지 Vol.25 No.10

        Concentrations of fine particulate matter (PM<sub>2.5</sub>) and several of its particle constituents measured outside homes in Houston, Texas, and Los Angeles, California, were characterized using multiple regression analysis with proximity to point and mobile sources and meteorological factors as the independent variables. PM<sub>2.5</sub> mass and the concentrations of organic carbon (OC), elemental carbon (EC), benzo-[a]-pyrene (BaP), perylene (Per), benzo-[g,h,i]-perylene (BghiP), and coronene (Cor) were examined. Negative associations of wind speed with concentrations demonstrated the effect of dilution by high wind speed. Atmospheric stability increase was associated with concentration increase. Petrochemical source proximity was included in the EC model in Houston. Area source proximity was not selected for any of the PM<sub>2.5</sub> constituents` regression models. When the median values of the meteorological factors were used and the proximity to sources varied, the air concentrations calculated using the models for the eleven PM<sub>2.5</sub> constituents outside the homes closest to influential highways were 1.5-15.8 fold higher than those outside homes furthest from the highway emission sources. When the median distance to the sources was used in the models, the concentrations of the PM<sub>2.5</sub> constituents varied 2 to 82 fold, as the meteorological conditions varied over the observed range. We found different relationships between the two urban areas, illustrating the unique nature of urban sources and suggesting that localized sources need to be evaluated carefully to understand their potential contributions to PM<sub>2.5</sub> mass and its particle constituents concentrations near residences, which influence baseline indoor air concentrations and personal exposures. The results of this study could assist in the appropriate design of monitoring networks for community-level sampling and help improve the accuracy of exposure models linking emission sources with estimated pollutant concentrations at the residential level.

      • Volatility of methylglyoxal cloud SOA formed through OH radical oxidation and droplet evaporation

        Ortiz-Montalvo, D.L.,Schwier, A.N.,Lim, Y.B.,McNeill, V.F.,Turpin, B.J. Pergamon Press ; Elsevier [distribution] 2016 Atmospheric environment Vol.130 No.-

        <P>The volatility of secondary organic aerosol (SOA) formed through cloud processing (aqueous hydroxyl radical (OH) oxidation and droplet evaporation) of methylglyoxal (MGly) was studied. Effective vapor pressure and effective enthalpy of vaporization (Delta H-vap,H-eff) were determined using 1) droplets containing MGly and its oxidation products, 2) a Vibrating Orifice Aerosol Generator (VOAG) system, and 3) Temperature Programmed Desorption Aerosol-Chemical Ionization Mass Spectrometry (TPD Aerosol-CIMS). Simulated in-cloud MGly oxidation (for 10-30 min) produces an organic mixture of higher and lower volatility components with an overall effective vapor pressure of (4 +/- 7) x 10(-7) atm at pH 3. The effective vapor pressure decreases by a factor of 2 with addition of ammonium hydroxide (pH 7). The fraction of organic material remaining in the particle-phase after drying was smaller than for similar experiments with glycolaldehyde and glyoxal SOA. The Delta H-vap,H-eff of pyruvic acid and oxalic acid + methylglyoxal in the mixture (from TPD Aerosol-CIMS) were smaller than the theoretical enthalpies of the pure compounds and smaller than that estimated for the entire precursor/product mix after droplet evaporation. After 10 (even neutralized) will volatilize during droplet evaporation; neutralization and at least 80 min of oxidation at 10(-12) M (OH)-O-center dot (or >12 h at 10(-14) M) is needed before low volatility ammonium oxalate exceeds pyruvate. (C) 2015 Elsevier Ltd. All rights reserved.</P>

      • Identifying precursors and aqueous organic aerosol formation pathways during the SOAS campaign

        Sareen, Neha,Carlton, Annmarie G.,Surratt, Jason D.,Gold, Avram,Lee, Ben,Lopez-Hilfiker, Felipe D.,Mohr, Claudia,Thornton, Joel A.,Zhang, Zhenfa,Lim, Yong B.,Turpin, Barbara J. Copernicus GmbH 2016 Atmospheric Chemistry and Physics Vol.16 No.22

        <P>Abstract. Aqueous multiphase chemistry in the atmosphere can lead to rapid transformation of organic compounds, forming highly oxidized, low-volatility organic aerosol and, in some cases, light-absorbing (brown) carbon. Because liquid water is globally abundant, this chemistry could substantially impact climate, air quality, and health. Gas-phase precursors released from biogenic and anthropogenic sources are oxidized and fragmented, forming water-soluble gases that can undergo reactions in the aqueous phase (in clouds, fogs, and wet aerosols), leading to the formation of secondary organic aerosol (SOAAQ). Recent studies have highlighted the role of certain precursors like glyoxal, methylglyoxal, glycolaldehyde, acetic acid, acetone, and epoxides in the formation of SOAAQ. The goal of this work is to identify additional precursors and products that may be atmospherically important. In this study, ambient mixtures of water-soluble gases were scrubbed from the atmosphere into water at Brent, Alabama, during the 2013 Southern Oxidant and Aerosol Study (SOAS). Hydroxyl (OH⚫) radical oxidation experiments were conducted with the aqueous mixtures collected from SOAS to better understand the formation of SOA through gas-phase followed by aqueous-phase chemistry. Total aqueous-phase organic carbon concentrations for these mixtures ranged from 92 to 179 µM-C, relevant for cloud and fog waters. Aqueous OH-reactive compounds were primarily observed as odd ions in the positive ion mode by electrospray ionization mass spectrometry (ESI-MS). Ultra high-resolution Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) spectra and tandem MS (MS-MS) fragmentation of these ions were consistent with the presence of carbonyls and tetrols. Products were observed in the negative ion mode and included pyruvate and oxalate, which were confirmed by ion chromatography. Pyruvate and oxalate have been found in the particle phase in many locations (as salts and complexes). Thus, formation of pyruvate/oxalate suggests the potential for aqueous processing of these ambient mixtures to form SOAAQ. </P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼