RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        Assessment of DNA damage caused by locally produced hydroxyapatite-silica nanocomposite using Comet assay on human lung fibroblast cell line

        Marahaini Musa,Thirumulu Ponnuraj Kannan,Sam’an Malik Masudi,Ismail Ab Rahman 대한독성 유전단백체 학회 2012 Molecular & cellular toxicology Vol.8 No.1

        The growing interest of nanotechnology in dentistry has sparked various applications of biomaterials in nanoscale to be developed. The aim of this study was to evaluate the genotoxicity effect of locally produced hydroxyapatite-silica nanocomposite (School of Dental Sciences, Universiti Sains Malaysia, Malaysia) using Comet assay on human lung fibroblast cell line, MRC-5. Extraction of this test material was prepared and the concentrations which produced IC10, IC25 and IC50 in cytotoxicity tests (MTT assay) were recorded. Three specific concentrations, 0.00005 g/mL, 0.0009 g/mL and 0.1 g/mL for IC10, 1C25 and IC50 respectively were further used to evaluate the genotoxicity effect along with concurrent positive (hydrogen peroxide) and negative (Eagle’s Minimum Essential Medium) controls. There was no significant difference in the tail moments between negative control and treatment groups (0.00005 g/mL). Dose-dependent relationship was observed, where significant difference was noticed in the tail moments between 0.0009 g/mL and 0.1 g/mL groups with that of the negative control. However, since the values were still less than 5, it can be considered as non-genotoxic. The tail moments between different concentrations of hydroxyapatite-silica nanocomposite and positive control differed significantly (P⁄0.05). This concludes that the locally produced HAsilica nanocomposite is non-genotoxic by Comet assay under the present test conditions.

      • SCOPUSKCI등재

        Keloid Scarring: Understanding the Genetic Basis, Advances, and Prospects

        Halim, Ahmad Sukari,Emami, Azadeh,Salahshourifar, Iman,Kannan, Thirumulu Ponnuraj Korean Society of Plastic and Reconstructive Surge 2012 Archives of Plastic Surgery Vol.39 No.3

        Keloid disease is a fibroproliferative dermal tumor with an unknown etiology that occurs after a skin injury in genetically susceptible individuals. Increased familial aggregation, a higher prevalence in certain races, parallelism in identical twins, and alteration in gene expression all favor a remarkable genetic contribution to keloid pathology. It seems that the environment triggers the disease in genetically susceptible individuals. Several genes have been implicated in the etiology of keloid disease, but no single gene mutation has thus far been found to be responsible. Therefore, a combination of methods such as association, gene-gene interaction, epigenetics, linkage, gene expression, and protein analysis should be applied to determine keloid etiology.

      • KCI등재

        Keloid Scarring: Understanding the Genetic Basis, Advances, and Prospects

        Ahmad Sukari Halim,Azadeh Emami,Iman Salahshourifar,Thirumulu Ponnuraj Kannan 대한성형외과학회 2012 Archives of Plastic Surgery Vol.39 No.3

        Keloid disease is a fibroproliferative dermal tumor with an unknown etiology that occurs after a skin injury in genetically susceptible individuals. Increased familial aggregation, a higher prevalence in certain races, parallelism in identical twins, and alteration in gene expression all favor a remarkable genetic contribution to keloid pathology. It seems that the environment triggers the disease in genetically susceptible individuals. Several genes have been implicated in the etiology of keloid disease, but no single gene mutation has thus far been found to be responsible. Therefore, a combination of methods such as association, gene-gene interaction,epigenetics, linkage, gene expression, and protein analysis should be applied to determine keloid etiology.

      • KCI등재

        White mineral trioxide aggregate mixed with calcium chloride dihydrate: chemical analysis and biological properties

        Hany Mohamed Aly Ahmed,Norhayati Luddin,Thirumulu Ponnuraj Kannan,Khairani Idah Mokhtar,Azlina Ahmad 대한치과보존학회 2017 Restorative Dentistry & Endodontics Vol.42 No.3

        Objectives: This study aimed to evaluate the chemical and biological properties of fast-set white mineral trioxide aggregate (FS WMTA), which was WMTA combined with calcium chloride dihydrate (CaCl2·2H2O), compared to that of WMTA. Materials and Methods: Surface morphology, elemental, and phase analysis were examined using scanning electron microscope (SEM), energy dispersive X-ray microanalysis (EDX), and X-ray diffraction (XRD), respectively. The cytotoxicity and cell attachment properties were evaluated on human periodontal ligament fibroblasts (HPLFs) using methyl-thiazol-diphenyltetrazolium (MTT) assay and under SEM after 24 and 72 hours, respectively. Results: Results showed that the addition of CaCl2·2H2O to WMTA affected the surface morphology and chemical composition. Although FS WMTA exhibited a non-cytotoxic profile, the cell viability values of this combination were lesser than WMTA, and the difference was significant in 7 out of 10 concentrations at the 2 time intervals (p < 0.05). HPLFs adhered over the surface of WMTA and at the interface, after 24 hours of incubation. After 72 hours, there were increased numbers of HPLFs with prominent cytoplasmic processes. Similar findings were observed with FS WMTA, but the cells were not as confluent as with WMTA. Conclusions: The addition of CaCl2·2H2O to WMTA affected its chemical properties. The favorable biological profile of FS WMTA towards HPLFs may have a potential impact on its clinical application for repair of perforation defects.

      • KCI등재

        White mineral trioxide aggregate mixed with calcium chloride dihydrate: chemical analysis and biological properties

        Ahmed, Hany Mohamed Aly,Luddin, Norhayati,Kannan, Thirumulu Ponnuraj,Mokhtar, Khairani Idah,Ahmad, Azlina The Korean Academy of Conservative Dentistry 2017 Restorative Dentistry & Endodontics Vol.42 No.3

        Objectives: This study aimed to evaluate the chemical and biological properties of fast-set white mineral trioxide aggregate (FS WMTA), which was WMTA combined with calcium chloride dihydrate ($CaCl_2{\cdot}2H_2O$), compared to that of WMTA. Materials and Methods: Surface morphology, elemental, and phase analysis were examined using scanning electron microscope (SEM), energy dispersive X-ray microanalysis (EDX), and X-ray diffraction (XRD), respectively. The cytotoxicity and cell attachment properties were evaluated on human periodontal ligament fibroblasts (HPLFs) using methyl-thiazoldiphenyltetrazolium (MTT) assay and under SEM after 24 and 72 hours, respectively. Results: Results showed that the addition of $CaCl_2{\cdot}2H_2O$ to WMTA affected the surface morphology and chemical composition. Although FS WMTA exhibited a non-cytotoxic profile, the cell viability values of this combination were lesser than WMTA, and the difference was significant in 7 out of 10 concentrations at the 2 time intervals (p < 0.05). HPLFs adhered over the surface of WMTA and at the interface, after 24 hours of incubation. After 72 hours, there were increased numbers of HPLFs with prominent cytoplasmic processes. Similar findings were observed with FS WMTA, but the cells were not as confluent as with WMTA. Conclusions: The addition of $CaCl_2{\cdot}2H_2O$ to WMTA affected its chemical properties. The favorable biological profile of FS WMTA towards HPLFs may have a potential impact on its clinical application for repair of perforation defects.

      • KCI등재

        Biological Interaction Between Human Gingival Fibroblasts and Vascular Endothelial Cells for Angiogenesis: A Co-culture Perspective

        Nasar Um Min Allah,Zurairah Berahim,Azlina Ahmad,Thirumulu Ponnuraj Kannan 한국조직공학과 재생의학회 2017 조직공학과 재생의학 Vol.14 No.5

        Advancement in cell culture protocols, multidisciplinary research approach, and the need of clinical implication to reconstruct damaged or diseased tissues has led to the establishment of three-dimensional (3D) test systems for regeneration and repair. Regenerative therapies, including dental tissue engineering, have been pursued as a new prospect to repair and rebuild the diseased/lost oral tissues. Interactions between the different cell types, growth factors, and extracellular matrix components involved in angiogenesis are vital in the mechanisms of new vessel formation for tissue regeneration. In vitro pre-vascularization is one of the leading scopes in the tissue-engineering field. Vascularization strategies that are associated with co-culture systems have proved that there is communication between different cell types with mutual beneficial effects in vascularization and tissue regeneration in two-dimensional or 3D cultures. Endothelial cells with different cell populations, including osteoblasts, smooth muscle cells, and fibroblasts in a co-culture have shown their ability to advocate pre-vascularization. In this review, a co-culture perspective of human gingival fibroblasts and vascular endothelial cells is discussed with the main focus on vascularization and future perspective of this model in regeneration and repair.

      • KCI등재

        Angiogenic Potential of Extracellular Matrix of Human Amniotic Membrane

        Siti Nurnasihah Md Hashim,Muhammad Fuad Hilmi Yusof,Wafa’ Zahari,Khairul Bariah Ahmad Amin Noordin,Thirumulu Ponnuraj Kannan,Suzina Sheikh Abdul Hamid,Khairani Idah Mokhtar,Azlina Ahmad 한국조직공학과 재생의학회 2016 조직공학과 재생의학 Vol.13 No.3

        Combination between tissue engineering and other fields has brought an innovation in the area of regenerative medicine which ultimate aims are to repair, improve, and produce a good tissue construct. The availability of many types of scaffold, both synthetically and naturally have developed into many outstanding end products that have achieved the general objective in tissue engineering. Interestingly, most of this scaffold emulates extracellular matrix (ECM) characteristics. Therefore, ECM component sparks an interest to be explored and manipulated. The ECM featured in human amniotic membrane (HAM) provides a suitable niche for the cells to adhere, grow, proliferate, migrate and differentiate, and could possibly contribute to the production of angiogenic micro-environment indirectly. Previously, HAM scaffold has been widely used to accelerate wound healing, treat bone related and ocular diseases, and involved in cardiovascular repair. Also, it has been used in the angiogenicity study, but with a different technical approach. In addition, both side of HAM could be used in cellularised and decellularised conditions depending on the objectives of a particular research. Therefore, it is of paramount importance to investigate the behavior of ECM components especially on the stromal side of HAM and further explore the angiogenic potential exhibited by this scaffold.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼