RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Charge transfer between photosynthetic proteins and hematite in bio-hybrid photoelectrodes for solar water splitting cells

        Faccio Greta,Gajda-Schrantz Krisztina,Ihssen Julian,Boudoire Florent,Hu Yelin,문봉진,Bora Debajeet K,Thöny-Meyer Linda,Braun Artur 나노기술연구협의회 2015 Nano Convergence Vol.2 No.9

        Functionalization of the hematite photoanode with the photosynthetic light antenna protein C-phycocyanin (PC) can yield substantial enhancement of the photocurrent density. Photoelectrochemical cells with bio-hybrid electrodes from photosynthetic proteins and inorganic semiconductors have thus potential for the use in artificial photosynthesis. We investigate here processing routes for the functionalization of hematite photoanodes with PC, including in situ co-polymerization of PC with enzymatically-produced melanin, and using a recombinant PC genetically engineered to carry a hexa-histidine tag (αHisPC). First, the effect of the immobilisation of PC on the electrode morphology and photocurrent production is evaluated. Then, the electronic charge transfer in dark and light conditions is assessed with electrochemical impedance spectroscopy and valence band (VB) X-ray photoemission spectroscopy. The relative shift of the VB spectrum towards the Fermi energy E F upon illumination is smaller for the more complex processed coating and virtually disappears for αHisPC immobilised with a melanin film. Optimal conditions for protein immobilisation are determined and the dark currents benefit most from the most advanced protein coating processes.

      • KCI등재

        Bladder Augmentation Using Lyoplant®: First Experimental Results in Rats

        F. Winde,K. Backhaus,J. A. Zeitler,N. Schlegel,Th. Meyer 한국조직공학과 재생의학회 2019 조직공학과 재생의학 Vol.16 No.6

        BACKGROUND: Congenital defects of the urinary bladder (micro- or contracted bladder, bladder exstrophy) remain a challenging problem for pediatric surgeons. Even when conservative treatment options are fully exhausted, irreversible renal dysfunction can be observed in a large number of cases that can even lead to chronic renal failure and the need for kidney transplantation. To protect kidney function bladder augmentation using intestinal tissue is commonly applied as the standard treatment method. However due to the unphysiological nature of intestinal tissue a number of problems and complications such as urinary tract infections or bladder stone formation limit the clinical success of this approach. Moreover a number of substitutes for the implementation of a bladder augmentation have been tested without success to date. Here we used an experimental model to test wether the biocompatible collagen mesh Lyoplant may be a suitable candidate for bladder augmentation. METHODS: We implanted a biocompatible collagen mesh (Lyoplant) in a bladder defect rat model for bladder augmentation (Lyoplant-group: n = 12; sham group n = 4). After 6 weeks the abdomen was reopened and the initial implant as well as the bladder were resected for histological and immunohistochemical examination. RESULTS: All but one rat exhibited physiological growth and behaviour after the operation without differences between the Lyoplant-group (n = 12) and the sham group (n = 3). One rat from the sham group had to be excluded because of a suture leakage. No wound healing complications, wound infections and no herniation were observed. After 5 weeks the implants showed an adequate incorporation in all cases. This was confirmed by immunohistological analyses where a significant cell infiltration and neovascularization was observed. CONCLUSION: In summary, Lyoplant appears to be a promising tool in experimental bladder augmentation/regeneration in rats.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼