RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Kinetic and Equilibrium Study of Lead (II) Removal by Functionalized Multiwalled Carbon Nanotubes with Isatin Derivative from Aqueous Solutions

        Hasan Tahermansouri,Marzieh Beheshti 대한화학회 2013 Bulletin of the Korean Chemical Society Vol.34 No.11

        The carboxylated multiwall carbon nanotubes (MWCNT-COOH) and functionalized with isatin derivative (MWCNT-isatin) have been used as efficient adsorbents for the removal of lead (Pb) from aqueous solutions. The influence of variables including pH, concentration of the lead, amount of adsorbents and contact time was investigated by the batch method. The adsorption of the lead ions from aqueous solution by modified MWCNTs was studied kinetically using different kinetic models. The kinetic data were fitted with pseudo-firstorder, pseudo-second-order, and intra-particle diffusion models. The sorption process with MWCNT-COOH and MWCNT-isatin was well described by pseudo-second-order and pseudo-first-order kinetics, respectively which it was agreed well with the experimental data. Also, it involved the particle-diffusion mechanism. The values of regression coefficient of various adsorption isotherm models like Langmuir, Freundlich and Tempkin to obtain the characteristic parameters of each model have been carried out. The Langmuir isotherm was found to best represent the measured sorption data for both adsorbent.

      • SCOPUSKCI등재

        Synthesis, Characterization, and the Influence of Functionalized Multi-Walled Carbon Nanotubes with Creatinine and 2-Aminobenzophenone on the Gastric Cancer Cells

        Tahermansouri, Hasan,Aryanfar, Yaser,Biazar, Esmaeil Korean Chemical Society 2013 Bulletin of the Korean Chemical Society Vol.34 No.1

        The chemical functionalization of carboxylated multi-walled carbon nanotubes (MWCNT-COOH) by creatinine (MWCNT-Amide) and latter modification with 2-aminobenzophenone for producing 1-methyl-9-phenyl-1H-imidazo[4,5-b]quinolin-2-amine (MWCNT-quino) have been investigated. All products were characterized by Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscope, elemental analysis, thermogravimetric analysis, derivative thermogravimetric and cellular investigations. The interesting point is that MWCNT-quino can be homogeneously dispersed in dimethylformamide and to some extent in ethyl alcohol without sonication. Also, MTT assay was used to examine the behavior of cell proliferation after 48 h of cell culture experiments. Cellular results showed high toxicity of MWCNT-quino on the cancer cells. These functionalizations have been chosen due to active sites of carbonyl and methylene groups in MWCNT-Amide and the creating quinoline derivative on the MWCNTs for future application.

      • SCOPUSKCI등재

        Kinetic and Equilibrium Study of Lead (II) Removal by Functionalized Multiwalled Carbon Nanotubes with Isatin Derivative from Aqueous Solutions

        Tahermansouri, Hasan,Beheshti, Marzieh Korean Chemical Society 2013 Bulletin of the Korean Chemical Society Vol.34 No.11

        The carboxylated multiwall carbon nanotubes (MWCNT-COOH) and functionalized with isatin derivative (MWCNT-isatin) have been used as efficient adsorbents for the removal of lead (Pb) from aqueous solutions. The influence of variables including pH, concentration of the lead, amount of adsorbents and contact time was investigated by the batch method. The adsorption of the lead ions from aqueous solution by modified MWCNTs was studied kinetically using different kinetic models. The kinetic data were fitted with pseudo-first-order, pseudo-second-order, and intra-particle diffusion models. The sorption process with MWCNT-COOH and MWCNT-isatin was well described by pseudo-second-order and pseudo-first-order kinetics, respectively which it was agreed well with the experimental data. Also, it involved the particle-diffusion mechanism. The values of regression coefficient of various adsorption isotherm models like Langmuir, Freundlich and Tempkin to obtain the characteristic parameters of each model have been carried out. The Langmuir isotherm was found to best represent the measured sorption data for both adsorbent.

      • KCI등재

        Synthesis, characterization, and toxicity of multi-walled carbon nanotubes functionalized with 4-hydroxyquinazoline

        Hasan Tahermansouri,Atieh Mirosanloo,Saeed Heidari Keshel,Mossa Gardaneh 한국탄소학회 2016 Carbon Letters Vol.17 No.-

        The attachment of 2-aminobenzamide to carboxylated multi-wall carbon nanotubes (MWCNTs)- COOH was achieved through the formation of amide bonds. Then, the functionalized MWCNTs, MWCNT-amide, were treated by phosphoryl chloride to produce MWCNT-quin. The products were characterized by Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, thermogravimetric analysis, derivative thermogravimetric, steady-state fluorescence spectroscopy, and solubility testing. MWCNT-quin showed photo-electronic properties, which is due to the attachment of the 4-hydroxyquinazoline groups to them as proved by steady-state fluorescence spectroscopy. This suggests intramolecular interactions between the tubes and the attached 4-hydroxyquinazoline. The toxicity of the samples was evaluated in human embryonic kidney HEK293 and human breast cancer SKBR3 cell lines, and the viable cell numbers were measured by 3-(4,5-dimethyl- 2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) after the cells were cultured for 24 h. Cellular investigations showed that the modified MWCNTs, particularly MWCNT- quin, have considerably significant toxic impact on SKBR3 as compared to HEK293 at the concentration of 5 μg/mL.

      • KCI등재

        Synthesis, Characterization, and the Influence of Functionalized Multi-Walled Carbon Nanotubes with Creatinine and 2-Aminobenzophenone on the Gastric Cancer Cells

        Hasan Tahermansouri,Yaser Aryanfar,Esmaeil Biazar 대한화학회 2013 Bulletin of the Korean Chemical Society Vol.34 No.1

        The chemical functionalization of carboxylated multi-walled carbon nanotubes (MWCNT-COOH) by creatinine (MWCNT-Amide) and latter modification with 2-aminobenzophenone for producing 1-methyl-9- phenyl-1H-imidazo[4,5-b]quinolin-2-amine (MWCNT-quino) have been investigated. All products were characterized by Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscope, elemental analysis, thermogravimetric analysis, derivative thermogravimetric and cellular investigations. The interesting point is that MWCNT-quino can be homogeneously dispersed in dimethylformamide and to some extent in ethyl alcohol without sonication. Also, MTT assay was used to examine the behavior of cell proliferation after 48 h of cell culture experiments. Cellular results showed high toxicity of MWCNT-quino on the cancer cells. These functionalizations have been chosen due to active sites of carbonyl and methylene groups in MWCNT-Amide and the creating quinoline derivative on the MWCNTs for future application.

      • KCI등재

        Kinetic and multi-parameter isotherm studies of picric acid removal from aqueous solutions by carboxylated multi-walled carbon nanotubes in the presence and absence of ultrasound

        Soheila Gholitabar,Hasan Tahermansouri 한국탄소학회 2017 Carbon Letters Vol.22 No.-

        Carboxylated multi-wall carbon nanotubes (MWCNTs-COOH) have been used as efficient adsorbents for the removal of picric acid from aqueous solutions under stirring and ultrasound conditions. Batch experiments were conducted to study the influence of the different parameters such as pH, amount of adsorbents, contact time and concentration of picric acid on the adsorption process. The kinetic data were fitted with pseudo-first order, pseudo-secondorder, Elovich and intra-particle diffusion models. The kinetic studies were well described by the pseudo-second-order kinetic model for both methods. In addition, the adsorption isotherms of picric acid from aqueous solutions on the MWCNTs were investigated using six two-parameter models (Langmuir, Freundlich, Tempkin, Halsey, Harkins-Jura, Fowler- Guggenheim), four three-parameter models (Redlich-Peterson, Khan, Radke-Prausnitz, and Toth), two four-parameter equations (Fritz-Schlunder and Baudu) and one five-parameter equation (Fritz-Schlunder). Three error analysis methods, correlation coefficient, chi-square test and average relative errors, were applied to determine the best fit isotherm. The error analysis showed that the models with more than two parameters better described the picric acid sorption data compared to the two-parameter models. In particular, the Baudu equation provided the best model for the picric acid sorption data for both methods.

      • KCI등재

        Evaluation of thymolphthalein-grafted graphene oxide as an antioxidant for polypropylene

        Mona Bagheripour-Asl,Reza Jahanmardi,Hasan Tahermansouri,Erfan Forghani 한국탄소학회 2018 Carbon Letters Vol.25 No.-

        In the present work, capability of thymolphthalein-grafted graphene oxide, which was successfully synthesized in this study, in stabilization of polypropylene against thermal oxidation were investigated and compared with that of SONGNOX 1010, a commercially used phenolic antioxidant for the polymer. The modified graphene oxide were incorporated into polypropylene via melt mixing. State of distribution of the nanoplatelets in the polymer matrix was examined using scanning electron microscopy and was shown to be homogeneous. Measurements of oxidation onset temperature and oxidative induction time revealed that thymolphthalein-grafted graphene oxide modifies thermo-oxidative stability of the polymer in the melt state remarkably. However, the efficiency of the nanoplatelets in stabilization of polypropylene against thermal oxidation in melt state was shown to be inferior to that of SONGNOX 1010. Furthermore, oven ageing experiments followed by Fourier transform infrared spectroscopy showed that the modified graphene oxide improves thermo-oxidative stability of the polymer strongly in the solid state, so that its stabilization efficiency is comparable to that of SONGNOX 1010.

      • SCIESCOPUSKCI등재

        The simultaneous adsorption and desorption of flavonoids from bitter orange peel by the carboxylated multi‑walled carbon nanotubes

        Hassan Gholizadeh,Azade Ghorbani‑HasanSaraei,Hasan Tahermansouri,Seyed‑Ahmad Shahidi 한국탄소학회 2019 Carbon Letters Vol.29 No.3

        The carboxylated multi-walled carbon nanotubes (MWCNTs–COOH) were used as adsorbent for the separation of flavonoids (naringin and rutin) from bitter orange peel. The influence of the parameters such as, pH values, contact time, and desorption conditions was investigated. The samples were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, derivative thermogravimetric, scanning electron microscopy, UV–Vis spectroscopy, and high-performance liquid chromatography. After separation and desorption process, the eluent was injected for chromatography analysis. Under the optimal conditions, experimental results showed that the extraction efficiency of rutin was higher than naringin and other compounds. Moreover, the desorption percentage of flavonoids was calculated 83.6% after four cycles. This research confirmed that this method for separation of flavonoids is simple and less cost. In addition, the separated flavonoids can be used as antioxidant for the future applications.

      • SCIESCOPUSKCI등재

        Preparation and characterization of functionalized MWCNTs‑COOH with 3‑amino‑5‑phenylpyrazole as an adsorbent and optimization study using central composite design

        Mobina Alimohammady,Mansour Jahangiri,Farhoush Kiani,Hasan Tahermansouri 한국탄소학회 2019 Carbon Letters Vol.29 No.1

        Carboxylated multi-wall carbon nanotubes (MWCNTs-COOH) was functionalized with 3-amino-5-phenylpyrazole (MWCNTs- f) and characterized by FTIR, EDX, SEM, XRD and TGA. The MWCNTs-COOH and MWCNTs-f were used for the adsorption of Cd(II), Hg(II), and As(III) ions from aqueous solutions. Additionally, to study the influence of pH, adsorbent dose, and initial ions concentration on the adsorption process, the central composite design (CCD) was applied. The quadratic model was used for analysis of variance and indicated that adsorption of metal ions strongly depends on pH. Timedependent adsorption can be described by the pseudo-second-order kinetic model, and adsorption process was modeled by Langmuir isotherm for the adsorbents. Thermodynamic analysis showed that the adsorption of Cd(II), Hg(II) and As(III) ions were spontaneous and endothermic. Moreover, the competitive adsorption capacities of the heavy metal ions were slightly lower than noncompetitive ones. The same affinity order was observed under noncompetitive and competitive adsorption: As(III) > Cd(II) > Hg(II) in the case of MWCNTs-f. Desorption study revealed the favorable regeneration ability of adsorbents powders, even after three adsorption–desorption cycles.

      • KCI등재

        The simultaneous adsorption and desorption of flavonoids from bitter orange peel by the carboxylated multi-walled carbon nanotubes

        Gholizadeh Hassan,Ghorbani-HasanSaraei Azade,Tahermansouri Hasan,Shahidi Seyed-Ahmad 한국탄소학회 2019 Carbon Letters Vol.29 No.3

        The carboxylated multi-walled carbon nanotubes (MWCNTs–COOH) were used as adsorbent for the separation of flavonoids (naringin and rutin) from bitter orange peel. The influence of the parameters such as, pH values, contact time, and desorption conditions was investigated. The samples were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, derivative thermogravimetric, scanning electron microscopy, UV–Vis spectroscopy, and high-performance liquid chromatography. After separation and desorption process, the eluent was injected for chromatography analysis. Under the optimal conditions, experimental results showed that the extraction efficiency of rutin was higher than naringin and other compounds. Moreover, the desorption percentage of flavonoids was calculated 83.6% after four cycles. This research confirmed that this method for separation of flavonoids is simple and less cost. In addition, the separated flavonoids can be used as antioxidant for the future applications.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼