RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Mechanism of Lipid Induced Insulin Resistance: An Overview

        Samir Bhattacharya,Rakesh Kundu,Suman Dasgupta,Sushmita Bhattacharya 대한내분비학회 2012 Endocrinology and metabolism Vol.27 No.1

        Type 2 diabetes (T2D) is rapidly spreading throughout the world. It’s an insidious disease and still treated in an indirect manner without having specific drug target. In majority cases T2D is treated with drugs that address type 1 diabetes, majority of drugs aim to increase insulin release although the root cause for T2D is not the dearth of insulin release, it occurs in the later stage of disease development. T2D silently progressed in the patient; it begins with insulin resistance that takes place due to the loss of insulin sensitivity. Though insulin resistance is the centre of pathogenesis, our treatment of the disease has not yet addressed it. It is now a fact that insulin resistance is manifested by lipid and fatty acids (FAs) play a critical role in blunting insulin sensitivity. Our understanding is still poor in deciphering how lipid impose insulin insensitivity, majority of workers suggest it is because of insulin signaling defects which implements insulin function in inhibiting glucose to the cell from circulation. Number of long chain saturated FA has been shown to produce insulin signaling defects. However, we really need further investigation to find specific target(s) for FA induced damage. In addition to these information, a new dimension of T2D is getting attractive is fetuin-A/α2-Heremans-Schmid Glycoprotein,a secretary protein from liver. Its gene locus has been identified as T2D susceptible. Fetuin-A’s excess expression occurs by FA and it disrupts adipocyte function. It has been shown to be associated with T2D especially in obesity. In this review, we briefly discuss the present status on the mechanistic understanding of lipid induced insulin resistance that leads to T2D. More we understand the mechanism; opportunity to fight the battle with T2D will be increasing. Since, this field is now vast; we covered a few major events.

      • SCISCIESCOPUS

        Tailoring the mechanical properties of sputter deposited nanotwinned nickel-molybdenum-tungsten films

        Sim, Gi-Dong,Krogstad, Jessica A.,Xie, Kelvin Y.,Dasgupta, Suman,Valentino, Gianna M.,Weihs, Timothy P.,Hemker, Kevin J. Elsevier 2018 Acta materialia Vol.144 No.-

        <P><B>Abstract</B></P> <P>Advanced metallic alloys are attractive in microelectromechanical systems (MEMS) applications that require high density, electrical and thermal conductivity, strength, and dimensional stability. Here we report the mechanical behavior of direct current (DC) magnetron sputter deposited Nickel (Ni)-Molybdenum (Mo)-Tungsten (W) films annealed at various temperatures. The films deposit as single-phase nanotwinned solid solutions and possess ultra-high tensile strengths of approximately 3 GPa, but negligible ductility. Subsequent heat treatments resulted in grain growth and nucleation of Mo-rich precipitates. While films annealed at 600 °C or 800 °C for 1 h still showed brittle behavior, films annealed at 1,000 °C for 1 h were found to exhibit strength greater than 1.2 GPa and near 10% tensile ductility. In addition to the excellent mechanical properties, alloy films further exhibit remarkably improved dimensional stability – a lower coefficient of thermal expansion and greater microstructural stability. An excellent balance between mechanical properties and dimensional stability make sputter deposited Ni-Mo-W alloys promising structural materials for MEMS applications.</P> <P><B>Graphical abstract</B></P> <P>[DISPLAY OMISSION]</P>

      • KCI등재

        Exclusive T2 MRI contrast enhancement by mesoporous carbon framework encapsulated manganese oxide nanoparticles

        Kashmiri Deka,Anupam Guleria,Dinesh Kumar,Jayeeta Biswas,Saurabh Lodha,Som Datta Kaushik,Suman Dasgupta,PRITAM DEB 한국물리학회 2020 Current Applied Physics Vol.20 No.1

        Single mode (either T1 or T2) contrast agents employed during magnetic resonance imaging owe their advantage over their dual counterparts to the fact that they do not involve any quenching caused by interference between the two modes. The chemistry involving oxides of manganese is highly significant due to their applicability as MRI contrast agents. Manganese oxides are usually known to display a dominant T1 relaxation enhancement. But, in this work, an engineered structure of manganese oxide (Mn2O3) nanoparticles encapsulated within mesoporous carbon frameworks was developed which exhibited dominant T2 contrast enhancement, through regulation of contact between the magnetic ion and water. Microstructural characterization revealed that the mesoporous carbon frameworks were spherical in shape and the nanoparticles within them had an average size of 40–50 nm. Relaxivity measurement, MRI experiments and cell viability assay convincingly established the system as a new class of biocompatible T2 based magnetic resonance imaging agent.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼