RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUS

        Computing turbulent far-wake development behind a wind turbine with and without swirl

        Hu, Yingying,Parameswaran, Siva,Tan, Jiannan,Dharmarathne, Suranga,Marathe, Neha,Chen, Zixi,Grife, Ronald,Swift, Andrew Techno-Press 2012 Wind and Structures, An International Journal (WAS Vol.15 No.1

        Modeling swirling wakes is of considerable interest to wind farm designers. The present work is an attempt to develop a computational tool to understand free, far-wake development behind a single rotating wind turbine. Besides the standard momentum and continuity equations from the boundary layer theory in two dimensions, an additional equation for the conservation of angular momentum is introduced to study axisymmetric swirl effects on wake growth. Turbulence is simulated with two options: the standard ${\kappa}-{\varepsilon}$ model and the Reynolds Stress transport model. A finite volume method is used to discretize the governing equations for mean flow and turbulence quantities. A marching algorithm of expanding grids is employed to enclose the growing far-wake and to solve the equations implicitly at every axial step. Axisymmetric far-wakes with/without swirl are studied at different Reynolds numbers and swirl numbers. Wake characteristics such as wake width, half radius, velocity profiles and pressure profiles are computed. Compared with the results obtained under similar flow conditions using the computational software, FLUENT, this far-wake model shows simplicity with acceptable accuracy, covering large wake regions in far-wake study.

      • KCI등재

        Computing turbulent far-wake development behind a wind turbine with and without swirl

        Yingying Hu,Siva Parameswaran,Jiannan Tan,Suranga Dharmarathne,Neha Marathe,Zixi Chen,Ronald Grife,Andrew Swift 한국풍공학회 2012 Wind and Structures, An International Journal (WAS Vol.15 No.1

        Modeling swirling wakes is of considerable interest to wind farm designers. The present work is an attempt to develop a computational tool to understand free, far-wake development behind a single rotating wind turbine. Besides the standard momentum and continuity equations from the boundary layer theory in two dimensions, an additional equation for the conservation of angular momentum is introduced to study axisymmetric swirl effects on wake growth. Turbulence is simulated with two options: the standard k-ε model and the Reynolds Stress transport model. A finite volume method is used to discretize the governing equations for mean flow and turbulence quantities. A marching algorithm of expanding grids is employed to enclose the growing far-wake and to solve the equations implicitly at every axial step. Axisymmetric far-wakes with/without swirl are studied at different Reynolds numbers and swirl numbers. Wake characteristics such as wake width, half radius, velocity profiles and pressure profiles are computed. Compared with the results obtained under similar flow conditions using the computational software, FLUENT, this far-wake model shows simplicity with acceptable accuracy, covering large wake regions in far-wake study.

      • KCI등재

        The characteristics investigation under the unsteady cavitation condition in a centrifugal pump

        Jiaxing Lu,Shouqi Yuan,Parameswaran Siva,Jian-Ping Yuan,Xudong Ren,Banglun Zhou 대한기계학회 2017 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.31 No.3

        Numerical simulation and experimental method are combined to investigate the pump inlet and outlet pressure fluctuations, the vibration characteristics and the internal flow instabilities under the unsteady cavitation condition in a centrifugal pump. It is found that the unsteady cavitation starts to generate as the NPSHa is lower than 5.93 m. Apparent asymmetric and uneven cavity volume distribution on each blade and in the impeller can be observed as the NPSHa decreases from 4.39 m to 1.44 m, which includes the cavitation develops from cavitation surge, rotating cavitation to asymmetric cavitation. The flow vortexes in each blade channel are produced in the cavity trailing edges by the shedding and collapse of cavitation, which interfere with each other and aggravate the flow instabilities. The dominant frequencies of the pump inlet and outlet pressure fluctuations are the shaft frequency and blade passing frequency under the unsteady cavitation conditions, respectively. Broadband pulses are obtained from both the pump inlet and outlet pressure pulsations, which results from the random shedding and collapse of unsteady cavitation bubbles. Obvious corresponding relationship between the root mean squares of the vibration measured in different positions and the suction performance curve is found under both the non-cavitation and unsteady cavitation conditions.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼