RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Gene Expression Changes by Diallyl Trisulfide Administration in Chemically-induced Mammary Tumors in Rats

        Hahm Eun-Ryeong,Singh Shivendra V. 대한암예방학회 2022 Journal of cancer prevention Vol.27 No.1

        Diallyl trisulfide (DATS) was shown to be a potent inhibitor of luminal-type MCF-7 xenograft growth in vivo. The present study was conducted to determine the preventive effect of DATS administration using an N-methyl-N-nitrosourea (MNU)-induced rat mammary tumor model, which shares molecular resemblance to luminal-type human breast cancers. The DATS administration (50 mg/ kg body weight, 5 times/week) was safe, but did not reduce mammary tumor latency, incidence, burden or multiplicity. Therefore, we conducted RNA-seq analysis using mammary tumors from control and DATS-treated rats (n = 3 for each group) to gain insights into lack of mammary tumor prevention by this phytochemical. The gene ontology and the Kyoto encyclopedia of genes and genomes pathway analyses of the RNA-seq data revealed upregulation of genes associated with ribosomes, translation, peptide biosynthetic/metabolic process, and oxidative phosphorylation but downregulation of genes associated with mitogen-activated protein kinases. A total of 33 genes associated with ribosomes were significantly upregulated by DATS treatment, including RPL11 and RPS14. Western blotting confirmed upregulation of RPL11 and neurofascin protein expression in mammary tumors from DATS-treated rats when compared to controls. A statistically significant increase in protein level of c-Jun N-terminal kinase 2 was also observed in tumors from DATS-treated rats when compared to controls. On the other hand, expression of complex I subunits NDUFV1 or NDUFS1 was not affected by DATS treatment. These results offer potential explanations for ineffectiveness of DATS in the chemically-induced rat mammary tumor model. Inhibitors of the proteins upregulated by DATS may be needed to improve chemopreventive efficacy of this phytochemical.

      • KCI등재

        Mechanistic Targets of Diallyl Trisulfide in Human Breast Cancer Cells Identified by RNA-seq Analysis

        Eun-Ryeong Hahm,Su-Hyeong Kim,Sivapar V. Mathan,Rana P. Singh,Shivendra V. Singh 대한암예방학회 2021 Journal of cancer prevention Vol.26 No.2

        Diallyl trisulfide (DATS), a metabolic by-product of processed garlic, is highly effective in inhibiting growth of human breast cancer cells in vitro and in vivo, but the underlying mechanisms are still not fully understood. In this study, we performed RNA-seq analyses using luminal-type (MCF-7) and basal-like (MDA-MB-231) human breast cancer cells to identify mechanistic targets of DATS. The Reactome Pathway Analysis revealed upregulation of genes associated with SLIT/ROBO tumor suppressor signaling following DATS treatment in both MCF-7 and MDA-MB-231 cells. However, the expression of SLIT2 and ROBO1 proteins or their downstream target C-X-C motif chemokine receptor 4 was not affected by DATS treatment in both cell lines. The Reactome as well as the Gene Ontology Pathways Analyses of the RNA-seq data from DATS-treated cells indicated downregulation of genes associated with G2/M phase cell cycle arrest in comparison with vehicle-treated control cells. Consistent with the RNA-seq data, DATS treatment caused a significant increase in the fraction of the G2/M population in both cell lines when compared to corresponding control cells. In addition, Ser10 phosphorylation of histone H3, a mitotic marker, was also increased significantly following DATS treatment in MCF-7 and MDA-MB-231 cells. These results indicate that while SLIT/ROBO signaling is not affected by DATS treatment, cell cycle arrest likely contributes to the antitumor effect of this phytochemical.

      • KCI등재

        Breast Cancer Selective Disruption of Actin Cytoskeleton by Diallyl Trisulfide

        Hahm Eun-Ryeong,Mathan Sivapar V.,Singh Rana P.,Singh Shivendra V. 대한암예방학회 2022 Journal of cancer prevention Vol.27 No.2

        Diallyl trisulfide (DATS) is an attractive anti-cancer phytochemical with in vitro and in vivo growth inhibitory effects against different solid tumors including breast cancer. We have shown previously that an immortalized mammary epithelial cell line (MCF-10A) is resistant to growth inhibition by DATS. In this study, we performed RNA-seq analysis using a breast cancer cell line (SK-BR-3) and MCF-10A cells to gain insights into cancer selective effects of DATS. The Gene Ontology analysis revealed upregulation of genes associated with actin cytoskeleton but downregulation of mitochondria-related genes in the SK-BR-3 human breast cancer cell line but not in the non-oncogenic MCF-10A cell line upon treatment with DATS. Quantitative real-time reverse transcription polymerase chain reaction confirmed DATS-mediated upregulation of several actin cytoskeleton-related genes in the SK-BR-3 cell line. The DATS treatment dose-dependently disrupted actin cytoskeleton in the SK-BR-3 cell line, whereas the MCF-10A cell line was more resistant to this effect. The DATS treatment caused a marked increase in phosphorylation of dynamin-1-like (DRP1) protein in the SK-BR-3 cell line. However, the DATS-mediated apoptosis was not affected by genetic deletion of DRP1 protein. The Reactome pathway analysis showed downregulation of genes associated with citric acid cycle in the SK-BR-3 cell line but not in the MCF-10A cells. However, expression of aconitase 2 or dihydrolipoamide S-succinyltransferase was not affected by DATS treatment. In conclusion, this study reveals that actin cytoskeleton is a novel target of DATS in the SK-BR-3 cell line, which may explain its inhibitory effect on breast cancer cell migration.

      • KCI등재

        Diallyl Trisulfide Inhibits Leptin-induced Oncogenic Signaling in Human Breast Cancer Cells but Fails to Prevent Chemically-induced Luminal-type Cancer in Rats

        Su-Hyeong Kim,Eun-Ryeong Hahm,Krishna B. Singh,Shivendra V. Singh 대한암예방학회 2020 Journal of cancer prevention Vol.25 No.1

        Previous studies have demonstrated inhibitory effect of garlic component diallyl trisulfide (DATS) on growth of breast cancer cells in vitro and in vivo. This study investigated the effect of DATS on oncogenic signaling regulated by leptin, which plays an important role in breast carcinogenesis. Leptin-induced phosphorylation and nuclear translocation of STAT3 was inhibited significantly in the presence of DATS in MCF-7 (a luminal-type human breast cancer cell line) and MDA-MB-231 (a basal-like human breast cancer cell line). Leptin-stimulated cell proliferation, clonogenic cell survival, and migration and/or invasion ability in MCF-7 and/or MDA-MB-231 cells were also suppressed by DATS treatment. DATS exposure resulted in inhibition of leptin-stimulated expression of protein and/ or mRNA levels of Bcl-2, Bcl-xL, Cyclin D1, vascular endothelial growth factor, and matrix metalloproteinase-2. Western blotting revealed a decrease in protein levels of phosphorylated STAT3 in breast cancer xenografts from DATS-treated mice when compared to controls in vivo. However, the incidence of N -methylN -nitrosourea-induced luminal-type breast cancer development in rats was not affected by oral administration of 5 mg/kg or 25 mg/kg DATS. The present study reveals that oncogenic signaling induced by leptin is inhibited in the presence of DATS but higher doses of this phytochemical may be required to achieve chemopreventive activity. Key Words Breast cancer, Leptin, STAT3, Diallyl trisulfide, Chemoprevention

      • KCI등재

        Prevention of Prostate Cancer in Transgenic Adenocarcinoma of the Mouse Prostate Mice by Yellow Passion Fruit Extract and Antiproliferative Effects of Its Bioactive Compound Piceatannol

        Larissa Akemi Kido,Eun-Ryeong Hahm,Su-Hyeong Kim,Andressa Mara Baseggio,Valeria Helena Alves Cagnon,Shivendra V. Singh,Mário Roberto Maróstica Jr 대한암예방학회 2020 Journal of cancer prevention Vol.25 No.2

        Piceatannol (PIC), a polyphenol presents in many vegetables and fruits including yellow passion fruit extract (PFE; Passiflora edulis), has anti-cancer activity, but its molecular targets are still poorly understood. The aims of this study were to investigate the molecular mechanistic actions of PIC in prostate cancer cell lines and to test if the extract from PFE rich in PIC can affect the growth of prostate cancer cells in the Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model. The PC-3, 22Rv1, LNCaP, and VCaP prostate cancer cells were exposed to PIC (10-40 μM), and cell viability, lactate measurement, Western blot, and flow cytometric analyses were performed. For an in vivo experiments, eight-week-old TRAMP mice (n = 10 per group each) received an aqueous extract of PFE containing 20 mg of PIC/kg or water (control group) by gavage for 4 or 10 weeks for further analyses. PIC treatment concentration- and time-dependently reduced viability of all cell lines tested. 22Rv1 and LNCaP cells treated with PIC did not exhibit any significant alteration in the intracellular accumulation of lactate. PIC treatment caused G0/G1 phase cell cycle arrest and induction of apoptosis in both LNCaP and 22Rv1 cells. PIC-treated cells exhibited altered protein levels of p53, p21, cyclin D1, and cyclin-dependent kinase 4 (cdk4). The short and long-term PFE treatments also affected p21, cyclin D1 and cdk4 and delayed disease progression in TRAMP, with a decreased incidence of preneoplastic lesions. In conclusion, PIC apparently does not alter glucose metabolism in prostate cancer cells, while cell cycle arrest and p53 modulation are likely important in anti-cancer effects of PIC alone or as a food matrix byproduct in prostate cancer cells, especially those with an androgen-dependent phenotype.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼