RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Fundamental Output Voltage Enhancement of Half-Bridge Voltage Source Inverter with Low DC-link Capacitance

        Ahmed Elserougi,Ahmed Massoud,Shehab Ahmed 전력전자학회 2018 JOURNAL OF POWER ELECTRONICS Vol.18 No.1

        Conventionally, in order to reduce the ac components of the dc-link capacitors of the two-level Half-Bridge Voltage Source Inverter (HB-VSI), high dc-link capacitances are required. This necessitates the employment of short-lifetime and bulky electrolytic capacitors. In this paper, an analysis for the performance of low dc-link capacitances-based HB-VSI is presented to elucidate its ability to generate an enhanced fundamental output voltage magnitude without increasing the voltage rating of the involved switches. This feature is constrained by the load displacement factor. The introduced enhancement is due to the ac components of the capacitors’ voltages. The presented approach can be employed for multi-phase systems through using multi single-phase HB-VSI(s). Mathematical analysis of the proposed approach is presented in this paper. To ensure a successful operation of the proposed approach, a closed loop current controller is examined. An expression for the critical dc-link capacitance, which is the lowest dc-link capacitance that can be employed for unipolar capacitors’ voltages, is derived. Finally, simulation and experimental results are presented to validate the proposed claims.

      • KCI등재

        A Buck-Boost Converter-Based Bipolar Pulse Generator

        Ahmed A. Elserougi,Ahmed M. Massoud,Shehab Ahmed 전력전자학회 2017 JOURNAL OF POWER ELECTRONICS Vol.17 No.6

        This paper presents a buck-boost converter-based bipolar pulse generator, which is able to generate bipolar exponential pulses across a resistive load. The concept of the proposed approach depends on operating the involved buck-boost converters in discontinuous current conduction mode with high-voltage gain and enhanced efficiency. A full design of the pulse generator and its passive components is presented to ensure generating the pulses with the desired specifications (rise time, pulse width, and pulse magnitude) for a given load resistance and input dc voltage. In case of moderate pulsed output voltages (i.e. few of kV), one module of the presented bipolar generator can be employed. While in case of high-voltage pulsed output, multi-module version can be employed, where each module is fed from an isolated dc source and their outputs are connected in series. Simulation models for the proposed approach are built to elucidate their performance in case of one-module as well as multi-module based generator. Finally, a scaled-down prototype for one-module of buck-boost converter-based bipolar pulse generator is implemented to validate the proposed concept.

      • SCIESCOPUSKCI등재

        Fundamental Output Voltage Enhancement of Half-Bridge Voltage Source Inverter with Low DC-link Capacitance

        Elserougi, Ahmed,Massoud, Ahmed,Ahmed, Shehab The Korean Institute of Power Electronics 2018 JOURNAL OF POWER ELECTRONICS Vol.18 No.1

        Conventionally, in order to reduce the ac components of the dc-link capacitors of the two-level Half-Bridge Voltage Source Inverter (HB-VSI), high dc-link capacitances are required. This necessitates the employment of short-lifetime and bulky electrolytic capacitors. In this paper, an analysis for the performance of low dc-link capacitances-based HB-VSI is presented to elucidate its ability to generate an enhanced fundamental output voltage magnitude without increasing the voltage rating of the involved switches. This feature is constrained by the load displacement factor. The introduced enhancement is due to the ac components of the capacitors' voltages. The presented approach can be employed for multi-phase systems through using multi single-phase HB-VSI(s). Mathematical analysis of the proposed approach is presented in this paper. To ensure a successful operation of the proposed approach, a closed loop current controller is examined. An expression for the critical dc-link capacitance, which is the lowest dc-link capacitance that can be employed for unipolar capacitors' voltages, is derived. Finally, simulation and experimental results are presented to validate the proposed claims.

      • SCIESCOPUSKCI등재

        A Buck-Boost Converter-Based Bipolar Pulse Generator

        Elserougi, Ahmed A.,Massoud, Ahmed M.,Ahmed, Shehab The Korean Institute of Power Electronics 2017 JOURNAL OF POWER ELECTRONICS Vol.17 No.6

        This paper presents a buck-boost converter-based bipolar pulse generator, which is able to generate bipolar exponential pulses across a resistive load. The concept of the proposed approach depends on operating the involved buck-boost converters in discontinuous current conduction mode with high-voltage gain and enhanced efficiency. A full design of the pulse generator and its passive components is presented to ensure generating the pulses with the desired specifications (rise time, pulse width, and pulse magnitude) for a given load resistance and input dc voltage. In case of moderate pulsed output voltages (i.e. few of kV), one module of the presented bipolar generator can be employed. While in case of high-voltage pulsed output, multi-module version can be employed, where each module is fed from an isolated dc source and their outputs are connected in series. Simulation models for the proposed approach are built to elucidate their performance in case of one-module as well as multi-module based generator. Finally, a scaled-down prototype for one-module of buck-boost converter-based bipolar pulse generator is implemented to validate the proposed concept.

      • KCI등재

        Hybrid-Boost Modular Multilevel Converter-Based Medium-Voltage Multiphase Induction Motor Drive for Subsea Applications

        Mohamed Daoud,Ahmed Elserougi,Ahmed Massou,Radu Bojoi,Ayman Abdel-Khalik,Shehab Ahmed 전력전자학회 2019 JOURNAL OF POWER ELECTRONICS Vol.19 No.3

        This paper proposes a hybrid-boost Modular Multilevel Converter (MMC) for the Medium-Voltage (MV) Variable Speed Drives (VSDs) employed in subsea applications, such as oil and gas recovery. In the presented architecture, a hybrid-boost MMC with a reduced number of semiconductor devices driving a multiphase Induction Machine (IM) is investigated. The stepped output voltage generated by the MMC reduces or eliminates the filtering requirements. Moreover, the boosting capability of the proposed architecture eliminates the need for bulky low-frequency transformers at the converter output terminals. A detailed illustration of the hybrid-boost MMC operation, the expected limitations/constraints, and the voltage balancing technique are presented. A simulation model of the proposed MV hybrid-boost MMC-based five-phase IM drive has been built to investigate the system performance. Finally, a downscaled prototype has been constructed for experimental verification.

      • SCIESCOPUSKCI등재

        Hybrid-Boost Modular Multilevel Converter-Based Medium-Voltage Multiphase Induction Motor Drive for Subsea Applications

        Daoud, Mohamed,Elserougi, Ahmed,Massoud, Ahmed,Bojoi, Radu,Abdel-Khalik, Ayman,Ahmed, Shehab The Korean Institute of Power Electronics 2019 JOURNAL OF POWER ELECTRONICS Vol.19 No.3

        This paper proposes a hybrid-boost Modular Multilevel Converter (MMC) for the Medium-Voltage (MV) Variable Speed Drives (VSDs) employed in subsea applications, such as oil and gas recovery. In the presented architecture, a hybrid-boost MMC with a reduced number of semiconductor devices driving a multiphase Induction Machine (IM) is investigated. The stepped output voltage generated by the MMC reduces or eliminates the filtering requirements. Moreover, the boosting capability of the proposed architecture eliminates the need for bulky low-frequency transformers at the converter output terminals. A detailed illustration of the hybrid-boost MMC operation, the expected limitations/constraints, and the voltage balancing technique are presented. A simulation model of the proposed MV hybrid-boost MMC-based five-phase IM drive has been built to investigate the system performance. Finally, a downscaled prototype has been constructed for experimental verification.

      • SCIESCOPUSKCI등재

        Strengthening of Cutouts in Existing One-Way Spanning R. C. Flat Slabs Using CFRP Sheets

        Shehab, Hamdy K.,Eisa, Ahmed S.,El-Awady, Kareem A. Korea Concrete Institute 2017 International Journal of Concrete Structures and M Vol.11 No.2

        Openings in slabs are usually required for many different applications such as aeriation ducts and air conditioning. Opening in concrete slabs due to cutouts significantly decrease the member stiffness. There are different techniques to strengthen slabs with opening cutouts. This study presents experimental and numerical investigations on the use of Carbon Fiber Reinforced Polymers (CFRP) as strengthening material to strengthen and restore the load carrying capacity of R.C. slabs after having cutout in the hogging moment region. The experimental program consisted of testing five (oneway spanning R.C. flat slabs) with overhang. All slabs were prismatic, rectangular in cross-section and nominally 2000 mm long, 1000 mm width, and 100 mm thickness with a clear span (distance between supports) of 1200 mm and the overhang length is 700 mm. All slabs were loaded up to 30 kN (45% of ultimate load for reference slab, before yielding of the longitudinal reinforcement), then the load was kept constant during cutting concrete and steel bars (producing cut out). After that operation, slabs were loaded till failure. An analytical study using finite element analysis (FEA) is performed using the commercial software ANSYS. The FEA has been validated and calibrated using the experimental results. The FE model was found to be in a good agreement with the experimental results. The investigated key parameters were slab aspect ratio for the opening ratios of [1:1, 2:1], CFRP layers and the laminates widths, positions for cutouts and the CFRP configurations around cutouts.

      • Improving the flexural toughness behavior of R.C beams using micro/nano silica and steel fibers

        Eisa, Ahmed S.,Shehab, Hamdy K.,El-Awady, Kareem A.,Nawar, Mahmoud T. Techno-Press 2021 Advances in concrete construction Vol.11 No.1

        Experimental investigation has been conducted to study the effect of using Micro/Nano Silica in presence of steel fibers on improving the static response of reinforced concrete beams. Twenty-one mixtures were prepared with micro silica (MS), Nano silica (NS) and steel fibers (SFs) at different percentages. Cement was replaced by 10% and 15% of Micro silica and 1%, 2% and 3% of Nano silica in the presence of steel fibers at different volume fractions 0%, 1%, and 2%. 258 concrete samples, (126 cubes, 63 cylinders, 63 prisms, and six R.C beams), were investigated experimentally in two stages. The first stage was to investigate the mechanical properties of the prepared mixtures. The second stage was to study the static behavior of R.C beams, using the designed concrete mixtures, under a four-point flexural test. The results showed that replacing cement by (10% MS and 1% NS) produces the optimum mix with a significant improvement in the mechanical properties and the response of R.C beams under static loads. In addition, incorporating steel fibers at different volume fractions have a considerable effect on the flexural toughness of concrete mixes.

      • KCI등재SCOPUS
      • KCI등재

        Strengthening of Cutouts in Existing One-Way Spanning R. C. Flat Slabs Using CFRP Sheets

        Hamdy K. Shehab,Ahmed S. Eisa,Kareem A. El-Awady 한국콘크리트학회 2017 International Journal of Concrete Structures and M Vol.11 No.2

        Openings in slabs are usually required for many different applications such as aeriation ducts and air conditioning. Opening in concrete slabs due to cutouts significantly decrease the member stiffness. There are different techniques to strengthen slabs with opening cutouts. This study presents experimental and numerical investigations on the use of Carbon Fiber Reinforced Polymers (CFRP) as strengthening material to strengthen and restore the load carrying capacity of R.C. slabs after having cutout in the hogging moment region. The experimental program consisted of testing five (oneway spanning R.C. flat slabs) with overhang. All slabs were prismatic, rectangular in cross-section and nominally 2000 mm long, 1000 mm width, and 100 mm thickness with a clear span (distance between supports) of 1200 mm and the overhang length is 700 mm. All slabs were loaded up to 30 kN (45% of ultimate load for reference slab, before yielding of the longitudinal reinforcement), then the load was kept constant during cutting concrete and steel bars (producing cut out). After that operation, slabs were loaded till failure. An analytical study using finite element analysis (FEA) is performed using the commercial software ANSYS. The FEA has been validated and calibrated using the experimental results. The FE model was found to be in a good agreement with the experimental results. The investigated key parameters were slab aspect ratio for the opening ratios of [1:1, 2:1], CFRP layers and the laminates widths, positions for cutouts and the CFRP configurations around cutouts.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼