RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Experimental investigation on the use of recycled aggregates in producing concrete

        Attaullah Shah,Irfan U. Jan,Raza U. Khan,Ehsan U. Qazi 국제구조공학회 2013 Structural Engineering and Mechanics, An Int'l Jou Vol.47 No.4

        Disposal of construction wastes poses major challenge to the municipal administration in the developing countries. At the same time new developments in these countries are unscrupulously exploiting the natural resources. The sustainable development requires judicious and careful utilization of natural resources. In this context, reuse of construction and demolition waste can save the global natural resources to greater extent. In this work the bricks and concrete waste from construction sites were crushed to the desired sizes and mixed in various proportions to study its properties in the concrete both in fresh and hardened states. Six mixes of natural and recycled aggregates were used to make the coarse aggregates for the concrete. From each mix nine cylinders were cast, which were tested at 7,14 and 28 days. The properties of concrete with recycled aggregates were compared with the control mix having natural aggregates. The nominal ratio of cement sand and coarse aggregates were kept at 1:2:4 by weight for all mixes. The tests have shown that concrete with recycled aggregates made from old concrete and brick bats provide greater opportunities for reuse of construction wastes in concrete.

      • SCIESCOPUS

        Investigation into shear properties of medium strength reinforced concrete beams

        Shah, Attaullah,Ahmad, Saeed,Khan, Salimullah Techno-Press 2010 Structural Engineering and Mechanics, An Int'l Jou Vol.35 No.3

        The shear contribution of transverse steel in reinforced concrete beams is generally assumed as independent of the concrete strength by most of the building codes. The shear strength of RC beams with web reinforcement is worked out by adding the individual contributions of concrete and stirrups. In this research 70 beams of medium strength concrete in the range of 52-54 MPa, compressive strength were tested in two sets of 35 beams each. In one set of 35 beams no web reinforcement was used, whereas in second set of 35 beams web reinforcement was used to check the contribution of stirrups. The values have also been compared with the provisions of ACI, Eurocode and Japanese Code building codes. The results of two sets of beams, when compared mutually and provisions of the building codes, showed that the shear strength of beams has been increased with the addition of stirrups for all the beams, but the increase is non uniform and irregular. The comparison of observed values with the provisions of selected codes has shown that EC-02 is relatively less conservative for low values of longitudinal steel, whereas ACI-318 overestimates the shear strength of RC beams at higher values of longitudinal steel. The Japanese code of JSCE has given relatively good results for the beams studied.

      • SCIESCOPUS

        Experimental investigation on the use of recycled aggregates in producing concrete

        Shah, Attaullah,Jan, Irfan U.,Khan, Raza U.,Qazi, Ehsan U. Techno-Press 2013 Structural Engineering and Mechanics, An Int'l Jou Vol.47 No.4

        Disposal of construction wastes poses major challenge to the municipal administration in the developing countries. At the same time new developments in these countries are unscrupulously exploiting the natural resources. The sustainable development requires judicious and careful utilization of natural resources. In this context, reuse of construction and demolition waste can save the global natural resources to greater extent. In this work the bricks and concrete waste from construction sites were crushed to the desired sizes and mixed in various proportions to study its properties in the concrete both in fresh and hardened states. Six mixes of natural and recycled aggregates were used to make the coarse aggregates for the concrete. From each mix nine cylinders were cast, which were tested at 7,14 and 28 days. The properties of concrete with recycled aggregates were compared with the control mix having natural aggregates. The nominal ratio of cement sand and coarse aggregates were kept at 1:2:4 by weight for all mixes. The tests have shown that concrete with recycled aggregates made from old concrete and brick bats provide greater opportunities for reuse of construction wastes in concrete.

      • KCI등재

        Investigation into shear properties of medium strength reinforced concrete beams

        Attaullah Shah,Saeed Ahmad,Salimullah Khan 국제구조공학회 2010 Structural Engineering and Mechanics, An Int'l Jou Vol.35 No.3

        The shear contribution of transverse steel in reinforced concrete beams is generally assumed as independent of the concrete strength by most of the building codes. The shear strength of RC beams with web reinforcement is worked out by adding the individual contributions of concrete and stirrups. In this research 70 beams of medium strength concrete in the range of 52-54 MPa, compressive strength were tested in two sets of 35 beams each. In one set of 35 beams no web reinforcement was used, whereas in second set of 35 beams web reinforcement was used to check the contribution of stirrups. The values have also been compared with the provisions of ACI, Eurocode and Japanese Code building codes. The results of two sets of beams, when compared mutually and provisions of the building codes, showed that the shear strength of beams has been increased with the addition of stirrups for all the beams, but the increase is non uniform and irregular. The comparison of observed values with the provisions of selected codes has shown that EC-02 is relatively less conservative for low values of longitudinal steel, whereas ACI-318 overestimates the shear strength of RC beams at higher values of longitudinal steel. The Japanese code of JSCE has given relatively good results for the beams studied.

      • KCI등재

        Electrochemical sensing of H2O2 using cobalt oxide modified TiO2 nanotubes

        Ullah Rahim,Rasheed Muhammad Asim,Abbas Shafqat,Rehman Khalil-ul,Shah Attaullah,Ullah Karim,Khan Yaqoob,Bibi Maryam,Ahmad Mashkoor,Ali Ghafar 한국물리학회 2022 Current Applied Physics Vol.38 No.-

        Cobalt oxide (Co3O4) modified anatase titanium dioxide nanotubes (ATNTs) have been investigated for the electrochemical sensing of hydrogen peroxide (H2O2). ATNTs have been synthesized by a two-step anodization process. ATNTs were then modified with Co3O4 employing chemical bath deposition method. The structure and morphology of ATNTs and their modification with Co3O4 has been confirmed by X-ray diffraction by scanning electron microscopy. H2O2 sensing has been studied in 0.1 M PBS solution, by cyclic voltammetry and amperometry. Variation in the peak positions and current densities was observed with addition of H2O2 for Co3O4 modified ATNTs. Sensitivity and limit of detection improved with modification of ATNTs with Co3O4 with precursor concentration up to 0.8 M. However, at higher precursor concentrations sensitivity and limit of detection toward H2O2 deteriorated. Co3O4 Modified ATNTS using 0.8 M precursor concentration are comparatively more suitable for H2O2 sensing applications due to the optimum formation of Co3O4/ATNTs heterojunctions.

      • KCI등재

        Effect of electrochemical reduction on the structural and electrical properties of anodic TiO2 nanotubes

        Muhammad Asim Rasheed,Kamran Ahmad,Nilem Khaliq,Yaqoob Khan,Muhammad Aftab Rafiq,Abdul Waheed,Attaullah Shah,Arshad Mahmood,Ghafar Ali 한국물리학회 2018 Current Applied Physics Vol.18 No.3

        The effect of electrochemical reduction on the structural and electrical properties of amorphous as well as annealed TiO2 nanotubes (TNTs) is investigated under ambient conditions. TNTs were prepared by anodizing titanium sheet in ethylene glycol electrolyte containing NH4F and de-ionized water at 40 V for 6 h. Electrochemical reduction is carried out in 1 M aqueous KOH solution for ~15 s at 3 V. TNTs are characterized by SEM, XRD, XPS and impedance spectrometer. XRD results confirm an increase in dspacing for (101) and (200) planes, after electrochemical reduction. XPS data reveal that electrochemical reduction produced prominent shifts of ~0.7e1.0 eV in the binding energies of TNTs. Interestingly, these shifts recover completely (in case of amorphous TNTs) and partially (in case of anatase TNTs) within ~7 days after reduction process due to oxygen uptake. Partial recovery in the binding energies of anatase TNTs is due to the fact that the oxygen vacancies are thermodynamically more stable as compared to amorphous TNTs. Similarly, the electrochemical reduction process decreases the impedance values of TNTs by more than three orders of magnitudes (from MU to kU). The impedance values also recover to the similar values before reduction in a span of ~7days.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼