RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUS

        Field measurements of wind-induced transmission tower foundation loads

        Savory, E.,Parke, G.A.R.,Disney, P.,Toy, N.,Zeinoddini, M. Techno-Press 1998 Wind and Structures, An International Journal (WAS Vol.1 No.2

        This paper discusses some of the findings arising from long-term monitoring of the wind effects on a transmission tower located on an exposed site in South-West England. Site wind speeds have been measured, together with the foundation loads at the base of each of the four legs. The results show good correlation between the wind speeds and leg strains (loads) for a given wind direction, as expected, for wind speeds in excess of 10 m/s. Comparisons between the measured strains and those determined from the UK Code of Practice for lattice towers (BS8100), for the same wind speed and direction, show that the Code over-estimates most of the measured foundation loads by a moderate amount of about 14% at the higher wind speeds. This tends to confirm the validity of the Code for assessing design foundation loads. A finite element analysis model has been used to examine the dynamic behaviour of the tower and conductor system. This shows that, in the absence of the conductor, the tower alone has similar natural frequencies of approximately 2.2 Hz in the both the first (transversal) and second (longitudinal) modes, whilst for the complete system and conductor oscillations dominate, giving similar frequencies of approximately 0.1 Hz for both the first and second modes.

      • SCIESCOPUS

        Evolution and scaling of a simulated downburst-producing thunderstorm outflow

        Oreskovic, Christopher,Savory, Eric,Porto, Juliette,Orf, Leigh G. Techno-Press 2018 Wind and Structures, An International Journal (WAS Vol.26 No.3

        For wind engineering applications downbursts are, presently, almost exclusively modeled, both experimentally and numerically, as transient impinging momentum jets (IJ), even though that model contains none of the physics of real events. As a result, there is no connection between the IJ-simulated downburst wind fields and the conditions of formation of the event. The cooling source (CS) model offers a significant improvement since it incorporates the negative buoyancy forcing and baroclinic vorticity generation that occurs in nature. The present work aims at using large-scale numerical simulation of downburst-producing thunderstorms to develop a simpler model that replicates some of the key physics whilst maintaining the relative simplicity of the IJ model. Using an example of such a simulated event it is found that the non-linear scaling of the velocity field, based on the peak potential temperature (and, hence, density) perturbation forcing immediately beneath the storm cloud, produces results for the radial location of the peak radial outflow wind speeds near the ground, the magnitude of that peak and the time at which the peak occurs that match well (typically within 5%) of those produced from a simple axi-symmetric constant-density dense source simulation. The evolution of the downdraft column within the simulated thunderstorm is significantly more complex than in any axi-symmetric model, with a sequence of downdraft winds that strengthen then weaken within a much longer period (>17 minutes) of consistently downwards winds over almost all heights up to at least 2,500 m.

      • SCIESCOPUS

        Large-scale quasi-steady modelling of a downburst outflow using a slot jet

        Lin, W.E.,Savory, E. Techno-Press 2006 Wind and Structures, An International Journal (WAS Vol.9 No.6

        This article synthesizes the literature on the meteorology, experimental simulation, and wind engineering ramifications of intense downburst outflows. A novel design of a large-scale test facility and experimental evidence of its validity are presented. A two-dimensional slot jet is used to simulate only the outflow region of a downburst. Profiles of mean velocity and turbulence quantities are acquired using hot-wire anemometry. Comparison with the literature provides empirical evidence that supports the current approach. A geometric analysis considers the validity of applying a two-dimensional approximation for downburst wind loading of structures. This analysis is applicable to power transmission lines in particular. The slot jet concept can be implemented in a large boundary layer wind tunnel to enable large-scale laboratory experiments of thunderstorm wind loads on structures.

      • KCI등재

        Large-scale quasi-steady modelling of a downburst outflow using a slot jet

        W.E. Lin,E. Savory 한국풍공학회 2006 Wind and Structures, An International Journal (WAS Vol.9 No.6

        This article synthesizes the literature on the meteorology, experimental simulation, and wind engineering ramifications of intense downburst outflows. A novel design of a large-scale test facility and experimental evidence of its validity are presented. A two-dimensional slot jet is used to simulate only the outflow region of a downburst. Profiles of mean velocity and turbulence quantities are acquired using hot-wire anemometry. Comparison with the literature provides empirical evidence that supports the current approach. A geometric analysis considers the validity of applying a two-dimensional approximation for downburst wind loading of structures. This analysis is applicable to power transmission lines in particular. The slot jet concept can be implemented in a large boundary layer wind tunnel to enable large-scale laboratory experiments of thunderstorm wind loads on structures.

      • SCIESCOPUS

        Physical modelling of a downdraft outflow with a slot jet

        Lin, W.E.,Savory, E. Techno-Press 2010 Wind and Structures, An International Journal (WAS Vol.13 No.5

        This article provides a time-resolved characterisation of the wind field in a recently-commissioned, downdraft outflow simulator at The University of Western Ontario. A large slot jet approach to physical simulation was used. The simulator performance was assessed against field observations from a 2002 downdraft outflow near Lubbock, Texas. Outflow wind speed records were decomposed according to classical time series analysis. Length scales, characterising the coarse and fine flow structure, were determined from the time-varying mean and residual components, respectively. The simulated downdraft outflow was approximately 1200 times smaller in spatial extent than the 2002 Lubbock event.

      • KCI등재

        Evolution and scaling of a simulated downburst-producing thunderstorm outflow

        Christopher Oreskovic,Eric Savory,Juliette Porto,Leigh G. Orf 한국풍공학회 2018 Wind and Structures, An International Journal (WAS Vol.26 No.3

        For wind engineering applications downbursts are, presently, almost exclusively modeled, both experimentally and numerically, as transient impinging momentum jets (IJ), even though that model contains none of the physics of real events. As a result, there is no connection between the IJ-simulated downburst wind fields and the conditions of formation of the event. The cooling source (CS) model offers a significant improvement since it incorporates the negative buoyancy forcing and baroclinic vorticity generation that occurs in nature. The present work aims at using large-scale numerical simulation of downburst-producing thunderstorms to develop a simpler model that replicates some of the key physics whilst maintaining the relative simplicity of the IJ model. Using an example of such a simulated event it is found that the non-linear scaling of the velocity field, based on the peak potential temperature (and, hence, density) perturbation forcing immediately beneath the storm cloud, produces results for the radial location of the peak radial outflow wind speeds near the ground, the magnitude of that peak and the time at which the peak occurs that match well (typically within 5%) of those produced from a simple axi-symmetric constant-density dense source simulation. The evolution of the downdraft column within the simulated thunderstorm is significantly more complex than in any axi-symmetric model, with a sequence of downdraft winds that strengthen then weaken within a much longer period (>17 minutes) of consistently downwards winds over almost all heights up to at least 2,500 m.

      • KCI등재

        Physical modelling of a downdraft outflow with a slot jet

        W.E. Lin,E. Savory 한국풍공학회 2010 Wind and Structures, An International Journal (WAS Vol.13 No.5

        This article provides a time-resolved characterisation of the wind field in a recentlycommissioned, downdraft outflow simulator at The University of Western Ontario. A large slot jet approach to physical simulation was used. The simulator performance was assessed against field observations from a 2002 downdraft outflow near Lubbock, Texas. Outflow wind speed records were decomposed according to classical time series analysis. Length scales, characterising the coarse and fine flow structure, were determined from the time-varying mean and residual components, respectively. The simulated downdraft outflow was approximately 1200 times smaller in spatial extent than the 2002 Lubbock event.

      • SCIESCOPUS

        Assessment of vertical wind loads on lattice framework with application to thunderstorm winds

        Mara, T.G.,Galsworthy, J.K.,Savory, E. Techno-Press 2010 Wind and Structures, An International Journal (WAS Vol.13 No.5

        The focus of this article is on the assessment of vertical wind vector components and their aerodynamic impact on lattice framework, specifically two distinct sections of a guyed transmission tower. Thunderstorm winds, notably very localized events such as convective downdrafts (including downbursts) and tornadoes, result in a different load on a tower's structural system in terms of magnitude and spatial distribution when compared to horizontal synoptic winds. Findings of previous model-scale experiments are outlined and their results considered for the development of a testing rig that allows for rotation about multiple body axes through a series of wind tunnel tests. Experimental results for the wind loads on two unique experimental models are presented and the difference in behaviour discussed. For a model cross arm with a solidity ratio of approximately 30%, the drag load was increased by 14% when at a pitch angle of $20^{\circ}$. Although the effects of rotation about the vertical body axis, or the traditional 'angle of attack', are recognized by design codes as being significant, provisions for vertical winds are absent from each set of wind loading specifications examined. The inclusion of a factor to relate winds with a vertical component to the horizontal speed is evaluated as a vertical wind factor applicable to load calculations. Member complexity and asymmetric geometry often complicate the use of lattice wind loading provisions, which is a challenge that extends to future studies and codification. Nevertheless, the present work is intended to establish a basis for such studies.

      • SCIESCOPUS

        Proposed large-scale modelling of the transient features of a downburst outflow

        Lin, W.E.,Orf, L.G.,Savory, E.,Novacco, C. Techno-Press 2007 Wind and Structures, An International Journal (WAS Vol.10 No.4

        A preceding companion article introduced the slot jet approach for large-scale quasi-steady modelling of a downburst outflow. This article extends the approach to model the time-dependent features of the outflow. A two-dimensional slot jet with an actuated gate produces a gust with a dominant roll vortex. Two designs for the gate mechanism are investigated. Hot-wire anemometry velocity histories and profiles are presented. As well, a three-dimensional, subcloud numerical model is used to approximate the downdraft microphysics, and to compute stationary and translating outflows at high resolution. The evolution of the horizontal and vertical velocity components is examined. Comparison of the present experimental and numerical results with field observations is encouraging.

      • Wind-induced mechanical energy analyses for a super high-rise and long-span transmission tower-line system

        Shuang Zhao,Zhitao Yan,Eric Savory,Bin Zhang 한국풍공학회 2022 Wind and Structures, An International Journal (WAS Vol.34 No.2

        This study aimed to analyze the wind-induced mechanical energy (WME) of a proposed super high-rise and long-span transmission tower-line system (SHLTTS), which, in 2021, is the tallest tower-line system with the longest span. Anew index – the WME, accounting for the wind-induced vibration behavior of the whole system rather than the local part, was first proposed. The occurrence of the maximum WME for a transmission tower, with or without conductors, under synoptic winds, was analyzed, and the corresponding formulae were derived based on stochastic vibration theory. Some calculation data, such as the drag coefficient, dynamic parameters, windshielding areas, mass, calculation point coordinates, mode shape and influence function, derived from wind tunnel testing on reducedscale models and finite element software were used in calculating the maximum WME of the transmission tower under three cases. Then, the influence of conductors, wind speed, gradient wind height and wind yaw angle on WME components and the energy transfer relationship between substructures (transmission tower and conductor) were analyzed. The study showed that the presence of conductors increases the WME of transmission towers and changes the proportion of the mean component (MC), background component (BC) and resonant component (RC) for WME; The RC of WME is more susceptible to the wind speed change. Affected by the gradient wind height, the WME components decrease. With the RC decreasing the fastest and the MC decreasing the slowest; The WME reaches the its maximum value at the wind yaw angle of 30o . Due to the influence of three factors, namely: the long span of the conductors, the gradient wind height and the complex geometrical profile, it is important that the tower-line coupling effect, the potential for fatigue damage and the most unfavorable wind yaw angle should be given particular attention in the wind-resistant design of SHLTTSs.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼