RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Qualitative study of nanocluster positioning process: Planar molecular dynamics simulations

        S.H. Mahboobi,A. Meghdari,N. Jalili,F. Amiri 한국물리학회 2009 Current Applied Physics Vol.9 No.5

        One of the key factors in the assembly of nanoclusters is the precise positioning of them by a manipulation system. Currently the size of clusters used as building blocks is shrinking down to a few nanometers. In such cases, the particle nature of matter plays an important role in the manipulator/cluster/substrate interactions. Having a deeper insight to the aforementioned nano-scale interactions is crucial for prediction and understanding of the behavior of nanoclusters during the positioning process. In the present research, 2D molecular dynamics simulations have been used to investigate such behaviors. Performing planar simulations can provide a fairly acceptable qualitative tool for our purpose while the computation time is greatly reduced in comparison to 3D simulations. The system consists of a tip, cluster and substrate. The focus of the present research is on ultra-fine metallic nanoclusters. To perform this research, Nose–Hoover dynamics and Sutton–Chen interatomic potential will be used to investigate the behavior of the above system which is made from different transition metals. The effects of material type, tip form and manipulation strategy on the success of the process have been investigated by planar molecular dynamics. Such qualitative simulation studies can evaluate the chance of success of a certain nanopositioning scenario regarding different working conditions before consuming large-scale computation time or high experimental expenses.

      • KCI등재

        Linear and nonlinear approaches towards amplitude modulation atomic force microscopy

        Aidin Delnavaz,S. Nima Mahmoodi,Nader Jalili,Hassan Zohoor 한국물리학회 2010 Current Applied Physics Vol.10 No.6

        Frequency response behavior of microcantilever is analytically and experimentally investigated in amplitude modulation Atomic Force Microscopy (AFM). AFM microcantilever probe is modeled as a continuous beam, and tip-sample interaction force is considered to include both attractive and repulsive force regimes. The developed model is compared with the linear lumped-parameters model that has been extensively used in the literature so far. Experimental measurements are also provided for the frequency response of a typical microcantilever-sample system to demonstrate the advantages of the developed model over the linear formulation. The results indicate that the nonlinear continuous model is more accurate, particularly in the estimation of the saturated amplitude value and frequency zone in which the tip-sample contact happens.

      • KCI등재

        The analytical solution of the buckling of composite truncated conical shells under combined external pressure and axial compression

        M. A. Boorboor Ajdari,S. Jalili,M. Jafari,J. Zamani,M. Shariyat 대한기계학회 2012 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.26 No.9

        The objective of this research is determining the buckling load of composite truncated conical shells under external loading by theoretical and numerical methods. The boundary conditions are assumed to be clamped. At first, basic equations and stability relations of conical shells were derived. The analysis is carried out using Donnel-type stability equations for thin cross-ply conical shells. By applying Galerkin’s method, these equations are converted to a system of ordinary time dependent differential equations. Ritz method is employed for finding the dynamic stability load. Finally, the critical static and dynamic buckling loads and the corresponding wave numbers have been found analytically. Then comparison of results is considered. Results of analytical calculations are compared with numerical results and with other researchers’ analytical results. The effects of geometric parameters, the cone semi-vertex angle, number of layers and material of fibers on buckling loads are discussed.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼