RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Flow solutions around rectangular cylinders: The question of spatial discretization

        Roberto Corsini,Diego Angeli,Enrico Stalio,Sergio Chibbaro,Andrea Cimarelli 한국풍공학회 2022 Wind and Structures, An International Journal (WAS Vol.34 No.1

        The aerodynamics of blunt bodies with separation at the sharp corner of the leading edge and reattachment on the body side are particularly important in civil engineering applications. In recent years, a number of experimental and numerical studies have become available on the aerodynamics of a rectangular cylinder with chord-to-thickness ratio equal to 5 (BARC). Despite the interest in the topic, a widely accepted set of guidelines for grid generation about these blunt bodies is still missing. In this work a new, well resolved Direct Numerical Simulation (DNS) around the BARC body at Re=3000 is presented and its results compared to previous DNSs of the same case but with different numerical approaches and mesh. Despite the simulations use different numerical approaches, mesh and domain dimensions, the main discrepancies are ascribed to the different grid spacings employed. While a more rigorous analysis is envisaged, where the order of accuracy of the schemes are kept the same while grid spacings are varied alternately along each spatial direction, this represents a first attempt in the study of the influence of spatial resolution in the Direct Numerical Simulation of flows around elongated rectangular cylinders with sharp corners

      • KCI등재

        Transcatheter Mitral Valve Implantation in Open Heart Surgery: An Off-Label Technique

        Jacopo Alfonsi,Giacomo Murana,Anna Corsini,Carlo Savini,Roberto Di Bartolomeo,Davide Pacini 대한흉부외과학회 2017 Journal of Chest Surgery (J Chest Surg) Vol.50 No.6

        Extensive mitral annulus calcifications are considered a contraindication for valve surgery. We describe the case of a 76-year-old female with severe mitral and aortic stenosis associated with extensive calcifications of the heart. The patient underwent an open mitroaortic valve replacement using transcatheter aortic valve implantation with an Edwards SAPIEN XT valve (Edwards Lifesciences Corp., Irvine, CA, USA) in the mitral position. T he a ortic valve was replaced u sing a s tentless v alve p rosthesis (LivaNova S OLO; L ivaNova PLC, London, UK). Postoperative echocardiography showed that the prosthetic valve was in the correct position and there were no paravalvular leaks. A bailout open transcatheter valve implantation can be considered a safe and effective option in selected cases with an extensively calcified mitral valve.

      • Implicit Large Eddy Simulations of a rectangular 5:1 cylinder with a high-order discontinuous Galerkin method

        Andrea Crivellini,Alessandra Nigro,Alessandro Colombo,Antonio Ghidoni,Gianmaria Noventa,Andrea Cimarelli,Roberto Corsini 한국풍공학회 2022 Wind and Structures, An International Journal (WAS Vol.34 No.1

        In this work the numerical results of the flow around a 5:1 rectangular cylinder at Reynolds numbers 3 000 and 40 000, zero angle of attack and smooth incoming flow condition are presented. Implicit Large Eddy Simulations (ILES) have been performed with a high-order accurate spatial scheme and an implicit high-order accurate time integration method. The spatial approximation is based on a discontinuous Galerkin (dG) method, while the time integration exploits a linearly-implicit Rosenbrock-type Runge-Kutta scheme. The aim of this work is to show the feasibility of high-fidelity flow simulations with a moderate number of DOFs and large time step sizes. Moreover, the effect of different parameters, i.e., dimension of the computational domain, mesh type, grid resolution, boundary conditions, time step size and polynomial approximation, on the results accuracy is investigated. Our best dG result at Re=3 000 perfectly agrees with a reference DNS obtained using Nek5000 and about 40 times more degrees of freedom. The Re=40 000 computations, which are strongly under-resolved, show a reasonable correspondence with the experimental data of Mannini et al. (2017) and the LES of Zhang and Xu (2020).

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼