RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Post-Damage Repair of Prestressed Concrete Girders

        Ramseyer, Chris,Kang, Thomas H.K. Korea Concrete Institute 2012 International Journal of Concrete Structures and M Vol.6 No.3

        Concrete is an economical construction material and for that reason it is widely used in buildings and infrastructures. The use of deicing salts, expansion joint failure, and freeze-thaw cycles have led to concrete bridge girders experiencing corrosion of steel reinforcement and becoming unsafe for driving. The goal of this research is to assess the effectiveness of current and possible repair techniques for the end region of damaged prestressed concrete girders. To do this, three American Association of State Highway and Transportation prestressed concrete girders were tested to failure, repaired, and retested. Three different repair materials were tested including carbon fiber, glass fiber, and surface mounted rods. Each different repair material was also tested with and without injected epoxy. Comparisons were then made to determine if injecting epoxy had a positive effect on stiffness and strength recovery as well as which repair type regained the largest percentage of original strength.

      • SCIESCOPUSKCI등재

        Economic and Fast-track Rehabilitation of Concrete Pavements and Bridge Decks

        Ramseyer, Chris,Chancellor, Brent,Kang, Thomas H.K. Korea Concrete Institute 2008 International Journal of Concrete Structures and M Vol.2 No.2

        The last 10 years have seen considerable growth in the use of proprietary and special repair cements for concrete pavements in the state of Oklahoma. Many of these products lend themselves to "fast track" construction techniques that allow reopening to traffic within 12 hours or less. These products achieve high early strengths by accelerating the Portland cement hydration process for both Type I and Type III cements. In this paper, the important features of a durable repair which include strength, compatibility and bond or adhesion are first discussed. Then the development, testing and field implementation of the aforementioned materials are discussed including the learning curve required to implement a repair system, not just install a new material. Some of the materials discussed, while expensive on a cost per unit basis, hold great promise for economical use on fast track project.

      • KCI등재

        Post-Damage Repair of Prestressed Concrete Girders

        Chris Ramseyer,Thomas H.-K. Kang 한국콘크리트학회 2012 International Journal of Concrete Structures and M Vol.6 No.3

        Concrete is an economical construction material and for that reason it is widely used in buildings and infrastructures. The use of deicing salts, expansion joint failure, and freeze?thaw cycles have led to concrete bridge girders experiencing corrosion of steel reinforcement and becoming unsafe for driving. The goal of this research is to assess the effectiveness of current and possible repair techniques for the end region of damaged prestressed concrete girders. To do this, three American Association of State Highway and Transportation prestressed concrete girders were tested to failure, repaired, and retested. Three different repair materials were tested including carbon fiber, glass fiber, and surface mounted rods. Each different repair material was also tested with and without injected epoxy. Comparisons were then made to determine if injecting epoxy had a positive effect on stiffness and strength recovery as well as which repair type regained the largest percentage of original strength.

      • Investigation of design values computation of wood shear walls constructed with structural foam sheathing

        Shadravan, Shideh,Ramseyer, Chris C. Techno-Press 2019 Advances in computational design Vol.4 No.3

        This study investigated the ultimate lateral load capacity of shear walls constructed with several types of structural foam sheathing. Sixteen tests were conducted and the results were compared to the published design values commutated by the manufactures for each test series. The sheathing products included 12.7 mm (1/2 in) SI-Strong, 25.4 mm (1 in) SI-Strong, 12.7 mm (1/2 in) R-Max Thermasheath, and 2 mm (0.078 in) ThermoPly Green. The structural foam sheathing was attached per the manufacturers' specification to one side of the wood frame for each wall tested. Standard 12.7 mm (1/2 in) gypsum wallboard was screwed to the opposite side of the frame. Simpson HDQ8 tie-down anchors were screwed to the terminal studs at each end of the wall and anchored to the base of the testing apparatus. Both monotonic and cyclic testing following ASTM E564 and ASTM E2126, respectively, were considered. Results from the monotonic tests showed an 11 to 27 percent smaller capacity when compared to the published design values. Likewise, the test results from the cyclic tests showed a 24 to 45 percent smaller capacity than the published design values and did not meet the seismic performance design criteria computation.

      • Comparison of structural foam sheathing and oriented strand board panels of shear walls under lateral load

        Shadravan, Shideh,Ramseyer, Chris C.,Floyd, Royce W. Techno-Press 2019 Advances in computational design Vol.4 No.3

        This study performed lateral load testing on seventeen wood wall frames in two sections. Section one included eight tests studying structural foam sheathing of shear walls subjected to monotonic loads following the ASTM E564 test method. In this section, the wood frame was sheathed with four different types of structural foam sheathing on one side and gypsum wallboard (GWB) on the opposite side of the wall frame, with Simpson HDQ8 hold down anchors at the terminal studs. Section two included nine tests studying wall constructed with oriented strand board (OSB) only on one side of the wall frame subjected to gradually applied monotonic loads. Three of the OSB walls were tied to the baseplate with Simpson LSTA 9 tie on each stud. From the test results for Section one; the monotonic tests showed an 11 to 27 percent reduction in capacity from the published design values and for Section two; doubling baseplates, reducing anchor bolt spacing, using bearing plate washers and LSTA 9 ties effectively improved the OSB wall capacity. In comparison of sections one and two, it is expected the walls with structural foam sheathing without hold downs and GWB have a lower wall capacity as hold down and GWB improved the capacity.

      • KCI등재
      • SCIESCOPUS

        Experimental testing of cold-formed built-up members in pure compression

        Biggs, Kenneth A.,Ramseyer, Chris,Ree, Suhyun,Kang, Thomas H.-K. Techno-Press 2015 Steel and Composite Structures, An International J Vol.18 No.6

        Cold-formed built-up members are compression members that are common in multiple areas of steel construction, which include cold-formed steel joints and stud walls. These members are vulnerable to unique buckling behaviors; however, limited experimental research has been done in this area. Give this gap, experimental testing of 71 built-up members was conducted in this study. The variations of the test specimens include multiple lengths, intermediate welds, orientations, and thicknesses. The experimental testing was devised to observe the different buckling modes of the built-up C-channels and the effects of the geometrical properties; to check for applicability of multiple intermediate welding patterns; and to evaluate both the 2001 and 2007 editions of the American Iron and Steel Institute (AISI) Specification for built-up members in pure compression. The AISI-2001 and AISI-2007 were found to give inconsistent results that at times were un-conservative or overly conservative in terms of axial strength. It was also found that orientation of the member has an important impact on the maximum failure load on the member.

      • SCIESCOPUSKCI등재

        Experimental and SEM Analyses of Ground Fly Ash in Concrete

        Brueggen, Beth,Kang, Thomas H.K.,Ramseyer, Chris Korea Concrete Institute 2010 International Journal of Concrete Structures and M Vol.4 No.1

        Fly ash is used in concrete to improve the fresh and hardened properties of concrete, including workability, initial hydration temperature, ultimate strength and durability. A primary limitation on the use of large quantities of fly ash in blended cement concrete is its slow rate of strength gain. Prior studies investigated the effects of grinding fly ash and fly ash fineness on the performance of concrete containing fly ash. This study aims to discover the sources of those effects, to verify the compressive strength behavior of concrete made with raw and processed Class C fly ash, and to investigate the properties of fly ash particles at the microscopic level. Concrete cylinder test results indicate that grinding fly ash can significantly benefit the early age strength as well as the ultimate strength of concrete with ground fly ash. Therefore, it is demonstrated that grinding fly ash increases its reactivity. Scanning Electron Microscopy was then used to investigate the physical effects of the grinding process on the fly ash particles in order to identify the mechanism by which grinding leads to improved concrete properties.

      • SCIESCOPUSKCI등재

        Pore Structure of Calcium Sulfoaluminate Paste and Durability of Concrete in Freeze-Thaw Environment

        de Bruyn, Kyle,Bescher, Eric,Ramseyer, Chris,Hong, Seongwon,Kang, Thomas H.K. Korea Concrete Institute 2017 International Journal of Concrete Structures and M Vol.11 No.1

        Mercury intrusion and nitrogen sorption porosimetry were employed to investigate the pore structure of calcium sulfoaluminate ($C{\bar{S}}A$) and portland cement pastes with cement-to-water ratio (w/c) of 0.40, 0.50, and 0.60. A unimodal distribution of pore size was drawn for $C{\bar{S}}A$ cement pastes, whereas a bimodal distribution was established for the portland cement pastes through analysis of mercury intrusion porosimetry. For the experimental results generated by nitrogen sorption porosimetry, the $C{\bar{S}}A$ cement pastes have a smaller and coarser pore volume than cement paste samples under the same w/c condition. The relative dynamic modulus and percentage weight loss were used for investigation of the concrete durability in freeze-thaw condition. When coarse aggregate with good freeze-thaw durability was mixed, air entrained portland cement concrete has the same durability in terms of relative dynamic modulus as $C{\bar{S}}A$ cement concrete in a freeze-thaw environment. The $C{\bar{S}}A$ cement concrete with poor performance of durability in a freeze-thaw environment demonstrates the improved durability by 300 % over portland cement concrete. The $C{\bar{S}}A$ concrete with good performance aggregate also exhibits less surface scaling in a freeze-thaw environment, losing 11 % less mass after 297 cycles.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼