RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Degradation of ultrahigh concentration pollutant by Fe/Cu bimetallic system at high operating temperature

        Bo Lai,Qingqing Ji,Yue Yuan,Donghai Yuan,Yuexi Zhou,Juling Wang 한국화학공학회 2016 Korean Journal of Chemical Engineering Vol.33 No.1

        To investigate the degradation of high concentration pollutant by Fe/Cu bimetallic system at a high operating temperature, 10,000mg/L acid orange 7 (AO7) aqueous solution was treated by Fe/Cu bimetallic system at 80 oC. First, the effect of the operating temperature (30-80 oC) on the reactivity of Fe/Cu bimetallic particles was investigated thoroughly. Then, the studies on the effect of theoretical Cu mass loading, Fe/Cu dosage, stirring speed and initial pH on the reactivity of Fe/Cu bimetallic particles at a high temperature (i.e., 80 oC) were carried out, respectively. The degradation and transformation process of AO7 was studied by using COD, TOC and UV-Vis spectra. The results indicate that high concentration pollutant could be removed effectively by Fe/Cu bimetallic system at a high operating temperature. And the removal efficiencies of AO7 by Fe/Cu bimetallic system were in accordance with the pseudofirst- order model. Finally, it was observed that the high temperature could accelerate mass transport rate and overcome the high activation energy barrier to significantly improve the reactivity of Fe/Cu bimetallic particles. Therefore, the higher removal efficiency could be obtained by Fe/Cu system at a high operating temperature. Thus, the high operating temperature played a leading role in the degradation of high concentration pollutant.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼