RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Antidiabetic Potentials of Momordica charantia: Multiple Mechanisms Behind the Effects

        Padmaja Chaturvedi 한국식품영양과학회 2012 Journal of medicinal food Vol.15 No.2

        Momordica charantia fruits are used as a vegetable in many countries. From time immemorial, it has also been used for management of diabetes in the Ayurvedic and Chinese systems of medicine. Information regarding the standardization of this vegetable for its usage as an antidiabetic drug is scanty. There are many reports on its effects on glucose and lipid levels in diabetic animals and some in clinical trials. Reports regarding its mechanism of action are limited. So in the present review all the information is considered to produce some concrete findings on the mechanism behind its hypoglycemic and hypolipidemic effects. Studies have shown that M. charantia repairs damaged b-cells, increases insulin levels, and also enhance the sensitivity of insulin. It inhibits the absorption of glucose by inhibiting glucosidase and also suppresses the activity of disaccharidases in the intestine. It stimulates the synthesis and release of thyroid hormones and adiponectin and enhances the activity of AMP-activated protein kinase (AMPK). Effects of M. charantia like transport of glucose in the cells,transport of fatty acids in the mitochondria, modulation of insulin secretion, and elevation of levels of uncoupling proteins in adipose and skeletal muscles are similar to those of AMPK and thyroxine. Therefore it is proposed that effects of M. charantia on carbohydrate and fat metabolism are through thyroxine and AMPK.

      • SCOPUSKCI등재

        Attenuation of Diabetic Conditions by Sida rhombifolia in Moderately Diabetic Rats and Inability to Produce Similar Effects in Severely Diabetic in Rats

        Chaturvedi, Padmaja,Kwape, Tebogo Elvis KOREAN PHARMACOPUNCTURE INSTITUTE 2015 Journal of pharmacopuncture Vol.18 No.4

        Objectives: This study was done out to evaluate the effects of Sida rhombifolia methanol extract (SRM) on diabetes in moderately diabetic (MD) and severely diabetic (SD) Sprague-Dawley rats. Methods: SRM was prepared by soaking the powdered plant material in 70% methanol and rota evaporating the methanol from the extract. Effective hypoglycemic doses were established by performing oral glucose tolerance tests (OGTTs) in normal rats. Hourly effects of SRM on glucose were observed in the MD and the SD rats. Rats were grouped, five rats to a group, into normal control 1 (NC1), MD control 1 (MDC1), MD experimental 1 (MDE1), SD control 1 (SDC1), and SD experimental 1 (SDE1) groups. All rats in the control groups were administered 1 mL of distilled water (DW). The rats in the MDE1 and the SDE1 groups were administered SRM orally at 200 and 300 mg/kg body weight (BW), respectively, dissolved in 1 mL of DW. Blood was collected initially and at intervals of 1 hour for 6 hours to measure blood glucose. A similar experimental design was followed for the 30-day long-term trial. Finally, rats were sacrificed, and blood was collected to measure blood glucose, lipid profiles, thiobarbituric acid reactive substances (TBARS) and reduced glutathione (GSH). Results: OGTTs indicated that two doses (200 and 300 mg/kg BW) were effective hypoglycemic doses in normal rats. Both doses reduced glucose levels after 1 hour in the MDE1 and the SDE1 groups. A long-term trial of SRM in the MD group showed a reduced glucose level, a normal lipid profile, and normal GSH and TBARS levels. In SD rats, SRM had no statistically significant effects on these parameters. Normal weight was achieved in the MD rats, but the SD rats showed reduced BW. Conclusion: The study demonstrates that SRM has potential to alleviate the conditions of moderate diabetic, but not severe diabetes.

      • KCI등재

        Attenuation of Diabetic Conditions by Sida rhombifolia in Moderately Diabetic Rats and Inability to Produce Similar Effects in Severely Diabetic in Rats

        Padmaja Chaturvedi,Tebogo Elvis Kwape 대한약침학회 2015 Journal of pharmacopuncture Vol.18 No.4

        Objectives: This study was done out to evaluate theeffects of Sida rhombifolia methanol extract (SRM) ondiabetes in moderately diabetic (MD) and severely diabetic(SD) Sprague-Dawley rats. Methods: SRM was prepared by soaking the powderedplant material in 70% methanol and rota evaporatingthe methanol from the extract. Effective hypoglycemicdoses were established by performing oral glucose tolerancetests (OGTTs) in normal rats. Hourly effects ofSRM on glucose were observed in the MD and the SDrats. Rats were grouped, five rats to a group, into normalcontrol 1 (NC1), MD control 1 (MDC1), MD experimental1 (MDE1), SD control 1 (SDC1), and SD experimental1 (SDE1) groups. All rats in the control groups wereadministered 1 mL of distilled water (DW). The rats inthe MDE1 and the SDE1 groups were administered SRMorally at 200 and 300 mg/kg body weight (BW), respectively,dissolved in 1 mL of DW. Blood was collected initiallyand at intervals of 1 hour for 6 hours to measureblood glucose. A similar experimental design was followedfor the 30-day long-term trial. Finally, rats weresacrificed, and blood was collected to measure bloodglucose, lipid profiles, thiobarbituric acid reactive substances(TBARS) and reduced glutathione (GSH). Results: OGTTs indicated that two doses (200 and300 mg/kg BW) were effective hypoglycemic doses innormal rats. Both doses reduced glucose levels after 1hour in the MDE1 and the SDE1 groups. A long-termtrial of SRM in the MD group showed a reduced glucoselevel, a normal lipid profile, and normal GSH andTBARS levels. In SD rats, SRM had no statistically significanteffects on these parameters. Normal weightwas achieved in the MD rats, but the SD rats showedreduced BW. Conclusion: The study demonstrates that SRM has potentialto alleviate the conditions of moderate diabetic,but not severe diabetes.

      • KCI등재

        Momordica charantia Maintains Normal Glucose Levels and Lipid Profiles and Prevents Oxidative Stress in Diabetic Rats Subjected to Chronic Sucrose Load

        Padmaja Chaturvedi,Saramma George 한국식품영양과학회 2010 Journal of medicinal food Vol.13 No.3

        Momordica charantia L., commonly known as bitter gourd, is used as a vegetable by the Asian community in Africa. It is frequently used as an antidiabetic herb for the management of the disease in the Ayurvedic system of medicine. The present study was aimed at evaluating the effects of M. charantia on glucose level, lipid profiles, and oxidative stress in diabetic rats subjected to a sucrose load. Five normal rats and 20 diabetic rats (diabetes induced by injecting alloxan monohydrate) were used for the experiment. Diabetic rats were divided into four groups: three experimental groups that received sucrose (4g/kg of body weight) plus graded doses of M. charantia extract and a diabetic control group that received only sucrose (4g/kg of body weight). Normal rats were used as the normal control group and received only sucrose (4kg/kg of body weight). The experiment was run for 30 days, after which rats were bled to assay blood glucose, lipid profiles, and thiobarbituric acid-reactive substances and reduced glutathione. After this, all treatments were terminated. Rats in the normal control group, diabetic control group, and experimental group 3 were subjected to observation for 30 days and were bled on day 31 to assay parameters as stated above. Results indicated that M. charantia maintained the normal glucose levels in all experimental groups, reduced triglyceride and low-density lipoprotein levels, and increased high-density lipoprotein levels. It also improved the antioxidant status, indicated by low levels of thiobarbituric acid-reactive substances and normal levels of reduced glutathione. Rats reverted to diabetic conditions and were found to be under oxidative stress after termination of treatment. This study concludes that M. charantia maintains the normal glucose level, lipid profiles, and antioxidant condition in diabetic rats against the sucrose load.

      • SCOPUSKCI등재

        Anti-Oxidant and Hepatoprotective Activities of Ziziphus mucronata Fruit Extract Against Dimethoate-Induced Toxicity

        Kwape, Tebogo Elvis,Chaturvedi, Padmaja,Kamau, Macharia,Majinda, Runner KOREAN PHARMACOPUNCTURE INSTITUTE 2013 Journal of pharmacopuncture Vol.16 No.1

        Objective: The study was carried out to evaluate the hepatoprotective and antioxidant potential of Ziziphus mucronata (ZM) fruit extract. Methods: The different types of fruit extract were prepared by soaking the dry powdered fruit in different solvents followed by rotary evaporation. Each extract was tested for its phenol content and antioxidant activities. An in vivo study was performed in Sprague-Dawley (SD) rats. Thirty adult male SD rats (aged 21 weeks) were divided into six groups of five rats each and treated as follows: The normal control (NC) received distilled water while the dimethoate control (DC) received 6 mg/kg.bw.day-1 dimethoate dissolved in distilled water. The experimental groups E1, E2, E3, and E0 received dimethoate (6 mg/kg.bw) + ZMFM (100 mg/kg.bw-1), dimethoate (6 mg/kg.bw) + ZMFM (200 mg/kg.bw-1), dimethoate (6 mg/kg.bw) + ZMFM (300 mg/kg.bw-1), and ZMFM (300 mg/kg.bw-1) only. Both the normal control and the dimethoate control groups were used to compare the results. After 90 days, rats were sacrificed, blood was collected for biochemical assays, and livers were harvested for histological study. Results: High phenol content was estimated, and 2, 2-diphenyl-1-picryl hydrazyl radical (DPPH) spectrophotometric, thin layer chromatography (TLC) and 2, 2-Azobis-3-ethyl benzothiazoline-6-sulphonic acid (ABTS) assays showed a high antioxidant activity among the extracts. The preventive effects observed in the E1, E2 and E3 groups proved that the extract could prevent dimethoate toxicity by maintaining normal reduced glutathione (GSH), vitamin C and E, superoxide dismutase, catalase, cholineasterase and lipid profiles. The preventive effect was observed to be dose dependent. The EO group showed no extract-induced toxicity. Histological observations agreed with the results obtained in the biochemical studies. Conclusion: The study demonstrated that ZM methanol fruit extract is capable of attenuating dimethoate-induced toxicity because of its high antioxidant activity.

      • KCI등재

        Anti-Oxidant and Hepatoprotective Activities of Ziziphus mucronata Fruit Extract Against Dimethoate-Induced Toxicity

        Tebogo Elvis Kwape,Padmaja Chaturvedi,Macharia Kamau,Runner Majinda 대한약침학회 2013 Journal of pharmacopuncture Vol.16 No.1

        Objective: The study was carried out to evaluate the hepatoprotective and antioxidant potential of Ziziphus mucronata (ZM) fruit extract. Methods: The different types of fruit extract were prepared by soaking the dry powdered fruit in different solvents followed by rotary evaporation. Each extract was tested for its phenol content and antioxidant activities. An in vivo study was performed in Sprague-Dawley (SD) rats. Thirty adult male SD rats (aged 21weeks) were divided into six groups of five rats each and treated as follows: The normal control (NC) received distilled water while the dimethoate control (DC)received 6 mg/kg.bw.day-1 dimethoate dissolved in distilled water. The experimental groups E1, E2, E3, and E0 received dimethoate (6 mg/kg.bw) + ZMFM (100mg/kg.bw-1), dimethoate (6 mg/kg.bw) + ZMFM (200mg/kg.bw-1), dimethoate (6 mg/kg.bw) + ZMFM (300mg/kg.bw-1), and ZMFM (300 mg/kg.bw-1) only. Both the normal control and the dimethoate control groups were used to compare the results. After 90 days, rats were sacrificed, blood was collected for biochemical assays, and livers were harvested for histological study. Results: High phenol content was estimated, and 2, 2-diphenyl-1-picryl hydrazyl radical (DPPH)spectrophotometric, thin layer chromatography (TLC)and 2, 2-Azobis-3-ethyl benzothiazoline-6-sulphonic acid (ABTS) assays showed a high antioxidant activity among the extracts. The preventive effects observed in the E1, E2 and E3 groups proved that the extract could prevent dimethoate toxicity by maintaining normal reduced glutathione (GSH), vitamin C and E,superoxide dismutase, catalase, cholineasterase and lipid profiles. The preventive effect was observed to be dose dependent. The EO group showed no extractinduced toxicity. Histological observations agreed with the results obtained in the biochemical studies. Conclusion: The study demonstrated that ZM methanol fruit extract is capable of attenuating dimethoate-induced toxicity because of its high antioxidant activity.

      • KCI등재

        Anti-Diabetic Effects of an Ethanol Extract of Cassia Abbreviata Stem Bark on Diabetic Rats and Possible Mechanism of Its Action - Anti-diabetic Properties of Cassia abbreviata -

        Keagile Bati,Tebogo Elvis Kwape,Padmaja Chaturvedi 대한약침학회 2017 Journal of pharmacopuncture Vol.20 No.1

        Objectives: This study aimed to evaluate the hypoglycemic effects of an ethanol extract of Cassia abbreviata (ECA) bark and the possible mechanisms of its action in diabetic albino rats. Methods: ECA was prepared by soaking the powdered plant material in 70% ethanol. It was filtered and made solvent-free by evaporation on a rotary evaporator. Type 2 diabetes was induced in albino rats by injecting 35 mg/ kg body weight (bw) of streptozotocin after having fed the rats a high-fat diet for 2 weeks. Diabetic rats were divided into ECA-150, ECA-300 and Metformin (MET)-180 groups, where the numbers are the doses in mg.kg.bw administered to the groups. Normal (NC) and diabetic (DC) controls were given distilled water. The animals had their fasting blood glucose levels and body weights determined every 7 days for 21 days. Oral glucose tolerance tests (OGTTs) were carried out in all animals at the beginning and the end of the experiment. Liver and kidney samples were harvested for glucose 6 phosphatase (G6Pase) and hexokinase activity analyses. Small intestines and diaphragms from normal rats were used for α-glucosidase and glucose uptake studies against the extract. Results: Two doses, 150 and 300 mg/kg bw, significantly reduced the fasting blood glucose levels in diabetic rats and helped them maintain normal body weights. The glucose level in DC rats significantly increased while their body weights decreased. The 150 mg/kg bw dose significantly increased hexokinase and decreased G6Pase activities in the liver and the kidneys. ECA inhibited α-glucosidase activity and promoted glucose uptake in the rats’ hemi-diaphragms. Conclusion: This study revealed that ECA normalized blood glucose levels and body weights in type 2 diabetic rats. The normalization of the glucose levels may possibly be due to inhibition of α-glucosidase, decreased G6Pase activity, increased hexokinase activity and improved glucose uptake by muscle tissues.

      • SCOPUSKCI등재

        Anti-Diabetic Effects of an Ethanol Extract of Cassia Abbreviata Stem Bark on Diabetic Rats and Possible Mechanism of Its Action - Anti-diabetic Properties of Cassia abbreviata -

        Bati, Keagile,Kwape, Tebogo Elvis,Chaturvedi, Padmaja KOREAN PHARMACOPUNCTURE INSTITUTE 2017 Journal of pharmacopuncture Vol.20 No.1

        Objectives: This study aimed to evaluate the hypoglycemic effects of an ethanol extract of Cassia abbreviata (ECA) bark and the possible mechanisms of its action in diabetic albino rats. Methods: ECA was prepared by soaking the powdered plant material in 70% ethanol. It was filtered and made solvent-free by evaporation on a rotary evaporator. Type 2 diabetes was induced in albino rats by injecting 35 mg/kg body weight (bw) of streptozotocin after having fed the rats a high-fat diet for 2 weeks. Diabetic rats were divided into ECA-150, ECA-300 and Metformin (MET)-180 groups, where the numbers are the doses in mg.kg.bw administered to the groups. Normal (NC) and diabetic (DC) controls were given distilled water. The animals had their fasting blood glucose levels and body weights determined every 7 days for 21 days. Oral glucose tolerance tests (OGTTs) were carried out in all animals at the beginning and the end of the experiment. Liver and kidney samples were harvested for glucose 6 phosphatase (G6Pase) and hexokinase activity analyses. Small intestines and diaphragms from normal rats were used for ${\alpha}-glucosidase$ and glucose uptake studies against the extract. Results: Two doses, 150 and 300 mg/kg bw, significantly reduced the fasting blood glucose levels in diabetic rats and helped them maintain normal body weights. The glucose level in DC rats significantly increased while their body weights decreased. The 150 mg/kg bw dose significantly increased hexokinase and decreased G6Pase activities in the liver and the kidneys. ECA inhibited ${\alpha}-glucosidase$ activity and promoted glucose uptake in the rats' hemi-diaphragms. Conclusion: This study revealed that ECA normalized blood glucose levels and body weights in type 2 diabetic rats. The normalization of the glucose levels may possibly be due to inhibition of ${\alpha}-glucosidase$, decreased G6Pase activity, increased hexokinase activity and improved glucose uptake by muscle tissues.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼