RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Mapping the potential areas for enclosure fish culture in tropical reservoirs: geo-spatial solutions for sustainable aquaculture expansion

        Arur Anand,G. Kantharajan,P. Krishnan,K. Abdul Hakeem,K. Sai Santosh,Ch. Srinivasa Rao,Kuldeep K. Lal,S. B. Choudhury,C. Manjulatha,D. E. Babu 대한공간정보학회 2019 Spatial Information Research Vol.27 No.6

        Planning aquaculture and fisheries activities in a reservoir requires knowledge of dynamics of water spread. We studied water spread dynamics of three reservoirs in the Godavari river basin, India using multi-temporal satellite imagery for the period 1990–2018 and developed a framework for mapping the spatial extent of water spread area (WSA) having potential for enclosure fish culture. The study showed that WSA of Nizamsagar reservoir in premonsoon season has declined from 108.11 to 99.34 km2 from phase I (1990–2006) to phase II (2007–2018), respectively and a similar trend was seen in Pocharam and Nallavagu reservoirs. For post monsoon seasons of the same time period, an increase in WSA was seen in Nizamsagar (133.75–144.14 km2) and Pocharam reservoirs (14.15-14.67 km2). Based on frequency of water presence during 2007–2018, WSA with potential for cage and pen culture was determined in Nizamsagar (31.04 km2) and Pocharam (2.87 km2) reservoirs. The study showed that both the reservoirs can accommodate maximum allowed number of cages (5000 and 500 cages respectively). We provide a decision matrix for location-specific selection of suitable culture methods and candidate species, which would aid in optimal utilization of the hitherto under-utilized reservoirs, especially in in situ data poor conditions. This study can be scaled up in the entire country with the help of academia/industry to prioritize reservoirs with potential for enclosure fish culture and plan appropriate interventions for reducing their yield gap.

      • KCI등재

        Rational design of Cu-doped Co3O4@carbon nanocomposite and agriculture crop-waste derived activated carbon for high-performance hybrid supercapacitors

        Mohan Reddy Pallavolu,Kurugundla Gopi Krishna,Goli Nagaraju,P.S. Srinivasa Babu,Sangaraju Sambasivam,ADEM SREEDHAR 한국공업화학회 2022 Journal of Industrial and Engineering Chemistry Vol.116 No.-

        Development of structurally stable transition metal-oxides and cost-effective biomass-based carbon materials have attracted considerable attention in the fabrication of hybrid supercapacitors. In this work, we designed spinal copper-doped cobalt oxide (Cu-Co3O4 ) nanoboxes decorated functionalized-carbon nanotubes (f-CNTs) as hybrid redox-type material and agriculture crop-waste derived mesoporous activated carbon as capacitive-type electrode for high-performance hybrid supercapacitors. Structural properties reveal that the Cu-Co3O4 has a cubic spinel structure and Raman spectra results confirm the presence of f-CNTs. The hybrid composite material demonstrates superior redox behavior with excellent structural durability. The hybrid electrodes exhibit maximum specific capacity of 130.7 mAh g−1 at 0.5 A g−1 with 86.7 % capacitance retention over 10,000 cycles. Besides, the crop waste-derived activated carbon demonstrates high surface area (1549 m2g-1), mesoporous characteristics and excellent capacitive behavior. The high voltage hybrid supercapacitor is further fabricated with Cu-Co3O4 @F-CNTs as battery-type and biomass-derived activated carbon as capacitive-type electrodes, which demonstrate high energy density of 30.8 Wh kg−1 at 5972 W kg -1 power density. The augmented results indicate that the hybrid composites with biomass-derived carbon materials pave the way for design of eco-friendly energy storage applications.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼