RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        A Fermented Soy Permeate Improves the Skeletal Muscle Glucose Level Without Restoring the Glycogen Content in Streptozotocin-Induced Diabetic Rats

        Ludivine Malarde,Sophie Vincent,Luz Lefeuvre-Orfila,The´o Efstathiou,Carole Groussard,Arlette Gratas-Delamarche 한국식품영양과학회 2013 Journal of medicinal food Vol.16 No.2

        Exercise is essential into the therapeutic management of diabetic patients, but their level of exercise tolerance is lowered due to alterations of glucose metabolism. As soy isoflavones have been shown to improve glucose metabolism, this study aimed to assess the effects of a dietary supplement containing soy isoflavones and alpha-galactooligosaccharides on muscular glucose, glycogen synthase (GSase), and glycogen content in a type 1 diabetic animal model. The dietary supplement tested was a patented compound, Fermented Soy Permeate (FSP), developed by the French Company Sojasun Technologies. Forty male Wistar rats were randomly assigned to control or diabetic groups (streptozotocin, 45 mg/kg). Each group was then divided into placebo or FSP-supplemented groups. Both groups received by oral gavage, respectively, water or diluted FSP (0.1 g/day), daily for a period of 3 weeks. At the end of the protocol, glycemia was noticed after a 24-h fasting period. Glucose, total GSase, and the glycogen content were determined in the skeletal muscle (gastrocnemius). Diabetic animals showed a higher blood glucose concentration, but a lower glucose and glycogen muscle content than controls. Three weeks of FSP consumption allowed to restore the muscle glucose concentration, but failed to reduce glycemia and to normalize the glycogen content in diabetic rats. Furthermore, the glycogen content was increased in FSP-supplemented controls compared to placebo controls. Our results demonstrated that diabetic rats exhibited a depleted muscle glycogen content (−25%). FSP-supplementation normalized the muscle glucose level without restoring the glycogen content in diabetic rats. However, it succeeded to increase it in the control group (+20%).

      • KCI등재

        Fermented Soy Permeate Reduces Cytokine Level and Oxidative Stress in Streptozotocin-Induced Diabetic Rats

        Ludivine Malarde,Carole Groussard,Luz Lefeuvre-Orfila,Sophie Vincent,The´o Efstathiou,Arlette Gratas-Delamarche 한국식품영양과학회 2015 Journal of medicinal food Vol.18 No.1

        Oxidative stress and inflammation are involved in the development of type 1 diabetes and its complications. Because two compounds found in soy, that is, isoflavones and alpha-galactooligosaccharides, have been shown to exert antioxidant and anti-inflammatory effects, this study aimed to assess the effects of a dietary supplement containing these two active compounds, the fermented soy permeate (FSP). We hypothesized that FSP would be able to reduce in vivo oxidative stress and inflammation in streptozotocin (STZ)–induced type 1 diabetic rats. Thirty male Wistar rats were divided into the control placebo, diabetic placebo, and diabetic FSP-supplemented groups. They received daily, by oral gavage, water (placebo groups) or diluted FSP (0.1 g/day; FSP-supplemented group). After 3 weeks, glycemic regulation (glycemia and fructosamine level); the plasma level of carboxymethyllysine (CML), a marker of systemic oxidative stress in diabetes; and the plasma levels of inflammatory markers (CRP, IL-1β, IL-6, and uric acid) were evaluated. Markers of oxidative damage (isoprostanes and GSH/GSSG), antioxidant enzymatic activity (SOD and GPX), and Mn-SOD content were determined in skeletal muscle (gastrocnemius). Diabetic placebo rats exhibited higher CML levels, lower SOD and GPX activities, and decreased Mn-SOD contents. FSP supplementation in diabetic animals normalized the CML and antioxidant enzymatic activity levels and tended to increase Mn-SOD expression. The markers of inflammation whose levels were increased in the diabetic placebo group were markedly decreased by FSP (IL-1β: - 75%, IL-6: - 46%, and uric acid: - 17%), except for CRP. Our results demonstrate that FSP exhibited antioxidant and anti-inflammatory properties in vivo in STZ-induced diabetic rats.

      • The Wnt Receptor Ryk Reduces Neuronal and Cell Survival Capacity by Repressing FOXO Activity During the Early Phases of Mutant Huntingtin Pathogenicity

        Tourette, Cendrine,Farina, Francesca,Vazquez-Manrique, Rafael P.,Orfila, Anne-Marie,Voisin, Jessica,Hernandez, Sonia,Offner, Nicolas,Parker, J. Alex,Menet, Sophie,Kim, Jinho,Lyu, Jungmok,Choi, Si Ho,C Public Library of Science 2014 PLoS biology Vol.12 No.6

        <▼1><P>A study of Huntington's disease reveals that neurons might fail to cope with maintaining their function during the pre-symptomatic, pathogenic phases of HD, possibly due to the early repression of key longevity-promoting transcription factors by abnormal developmental signaling.</P></▼1><▼2><P>The Wnt receptor Ryk is an evolutionary-conserved protein important during neuronal differentiation through several mechanisms, including γ-secretase cleavage and nuclear translocation of its intracellular domain (Ryk-ICD). Although the Wnt pathway may be neuroprotective, the role of Ryk in neurodegenerative disease remains unknown. We found that Ryk is up-regulated in neurons expressing mutant huntingtin (HTT) in several models of Huntington's disease (HD). Further investigation in <I>Caenorhabditis elegans</I> and mouse striatal cell models of HD provided a model in which the early-stage increase of Ryk promotes neuronal dysfunction by repressing the neuroprotective activity of the longevity-promoting factor FOXO through a noncanonical mechanism that implicates the Ryk-ICD fragment and its binding to the FOXO co-factor β-catenin. The Ryk-ICD fragment suppressed neuroprotection by <I>lin-18</I>/Ryk loss-of-function in expanded-polyQ nematodes, repressed FOXO transcriptional activity, and abolished β-catenin protection of mutant htt striatal cells against cell death vulnerability. Additionally, Ryk-ICD was increased in the nucleus of mutant htt cells, and reducing γ-secretase PS1 levels compensated for the cytotoxicity of full-length Ryk in these cells. These findings reveal that the Ryk-ICD pathway may impair FOXO protective activity in mutant polyglutamine neurons, suggesting that neurons are unable to efficiently maintain function and resist disease from the earliest phases of the pathogenic process in HD.</P></▼2><▼3><P><B>Author Summary</B></P><P>Neuronal cell decline in neurodegenerative disease can be caused by inherited mutations and involves neuronal dysfunction followed by neuronal death. The ability of neurons to cope with the chronic stress induced by mutant protein expression may determine the course of their decline and eventual demise. Although the pathophysiological importance of these stress responses has been previously shown, very little is known about the signaling networks that regulate neuronal homeostasis during the early presymptomatic—but pathogenic—phases of a neurodegenerative disorder such as Huntington's disease (HD). In particular, it remains unclear whether neuronal differentiation factors regulate stress response pathways during neurodegenerative disease and how this might impact the overall capacity of neurons to cope with stress and maintain their function. Here, we show that the Wnt receptor Ryk, a protein known to be important for neurogenesis, is increased in different animal models of HD, before or during the early phases of the disease process. Interestingly, increased levels of Ryk repress activity of the FOXO proteins—a family of transcription factors that play a role in cell survival/longevity and in neuronal homeostasis and protection. Ryk represses FOXO protective activity, possibly directly, through its intracellular domain, a product of γ-secretase–mediated cleavage previously implicated in the birth of new cortical neurons. This highlights the regulation of HD neuron survival by a Ryk-dependent pathway that is distinct from canonical Wnt/Ryk signaling. From our findings, we postulate that neurons are unable to develop an efficient FOXO-mediated survival response during the very early, pathogenic phases of HD.</P></▼3>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼