RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Anthropogenic Pollution Stimulates Oxidative Stress in Soft Tissues of Mussel Crenomytilus grayanus (Dunker1853)

        Nina N. Belcheva,Maxim V. Zakhartsev,Nadezhda V. Dovzhenko,Avianna F. Zhukovskaya,Victor Ya. Kavun,Victor P. Chelomin 한국해양과학기술원 2011 Ocean science journal Vol.46 No.2

        The digestive gland and gills of the mussel Crenomytilus grayanus extracted from three locations - (i) sampled from a clean and (ii) polluted site and (iii) transplanted from the nonpolluted to polluted site - were analysed for antioxidant enzymes (superoxide dismutase, catalase, glutathione reductase), total oxyradical scavenging capacity and levels of lipid peroxidation products (malondialdehyde, conjugated dienes and lipofuscin). Perturbation of redox status was found in both digestive gland and gill tissues of mussels living in the polluted area. As the activities of superoxide dismutase and catalase were 1.2-3 times higher, the total oxyradical scavenging capacity was lower by 20-35% and the levels of lipid peroxidation products were 2-7 times higher compared to mussels from the reference site. In transplanted mussels, the lipid peroxidation process in both tissues was significantly stimulated (the level of conjugated dienes was increased 1.7-2.5-fold; malondialdehyde and lipofuscin contents were increased 3.5-5-fold) and the total oxyradical scavenging capacity fell by 50-70%. In addition, the transplantation generally resulted in transient and variable responses of antioxidant enzymes for both tissues. Complex response-behaviour of the antioxidant enzymes strongly points to the necessity of employing a combined approach that takes into account activities of antioxidant enzymes and the total oxyradical scavenging capacity, as well as measurement of oxidative damage (e.g., lipid peroxidation) to evaluate the physiological health of molluscs.

      • KCI등재

        Metallothionein-like Proteins Induced by Cadmium Stress in the Scallop Mizuhopecten yessoensis

        Avianna F. Zhukovskaya,Nina N. Belcheva,Valentina V. Slobodskova,Viktor P. Chelomin 한국해양과학기술원 2012 Ocean science journal Vol.47 No.3

        Organisms have evolved a cellular response called stress protein response that increases their tolerance in adverse environmental conditions. Well known stress proteins that bind essential and toxic metals are metallothionein (MT). The scallop Mizuhopecten yessoensis is the most interesting organism because it is able to accumulate toxic cadmium in its digestive gland. However, in the tissue of the digestive gland of Mizuhopecten yessoensis MT (metallothioneins) have not been found. Eastern scallops, Mizuhopecten yessoensis, were collected from two locations - one clean and one polluted site. The concentrations of cadmium (Cd), copper (Cu) and zinc (Zn) were measured in the digestive gland. There was a significant increase in Cd concentrations in this studied tissue. We found that in the presence of cadmium Mizuhopecten yessoensis can induce high molecular proteins. The results of experiments have shown that Cd-binding ligands have a number of properties similar to MT: acetone and temperature stability; the ability to bind some metals, including Cd, Cu and Zn. Protein chromatography (FPLC, Superosa 12) from the digestive gland of scallop M. yessoensis has shown that cadmium is associated with high molecular weight Cd-binding proteins (72 kDa and 43 kDa). The major cadmium-binding protein 72 kDa is glycoprotein. In experiments we have demonstrated that Cd-binding proteins can be induced when there is cadmium exposure. The results of this study strongly suggest that the far eastern scallop Mizuhopecten yessoensis has a unique and well-developed system for the detoxification of heavy metals and it allows for biochemical systems to be maintained in a relatively stable manner in the presence of heavy metals.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼