RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Fuzzy Swinging-up with Sliding Mode Control for Third Order Cart-Inverted Pendulum System

        Belal A. Elsayed,Mohsen A. Hassan,Saad Mekhilef 제어·로봇·시스템학회 2015 International Journal of Control, Automation, and Vol.13 No.1

        Cart Inverted Pendulum (CIP) system is a benchmark problem in nonlinear automatic control. In this paper, two third-order differential equations were derived to create a combining model for the cart-pendulum with its DC motor dynamics. Motor voltage was considered the system input in the presented model. The friction between the cart and rail was included in the system equations through a nonlinear friction model. Fuzzy Swinging-up controller was designed to swing the pendulum to the up-right position, once reaching the upward position; Sliding Mode Controller (SMC) is activated, to balance the system. In order to verify the performance of the proposed SMC, a Linear Quadratic Regulator Controller (LQRC) was suggested and compared with the proposed SMC. Simulation and experimental results have shown a significant improvement of the proposed SMC over LQRC where, the pendulum angle oscillations were decreased by 80% in the real implementation.

      • SCIESCOPUSKCI등재

        Effects of Eggshell Pigmentation and Egg Size on the Spectral Properties and Characteristics of Eggshell of Meat and Layer Breeder Eggs

        Shafey, T.M.,Al-mohsen, T.H.,Al-sobayel, A.A.,Al-hassan, M.J.,Ghnnam, M.M. Asian Australasian Association of Animal Productio 2002 Animal Bioscience Vol.15 No.2

        The effects of eggshell pigmentation and egg size (medium and large) on the spectral properties and characteristics of eggshells were examined in eggs from two genetic groups of breeder flocks. Birds from meat (Hybro, pigmented eggshell, PES) and layer (Leghorn, non-pigmented eggshell, NPES) at 40 and 46 weeks of age, respectively, were used. Measurements of per cent shell (PS), shell thickness (ST), shell volume (SV), shell density (SD), egg shell conductance (EC) and physical dimensions of eggs were made. The spectral properties of eggshells were measured over the wavelength (WL) range of 200 to 1,100 nm. Eggshell absorbed approximately 99.8 percent of the light and transmitted only about 0.12 percent with a maximum light transmission at the near-infra-red region of about 1075 nm. It attenuated shorter WL and transmitted longer WL. Eggshell pigmentation and egg size influenced light transmission into the egg. The NPES had higher EC and transmission of light and lower PS and SD than those of the PES. Large size eggs had higher EC, SD, SV, transmission of light and egg physical dimensions than those of medium size eggs. It is concluded that genetic make up of birds and egg size influenced eggshell characteristics including EC and that, as a consequence, the difference in the spectral properties of eggshells. The pigmentation of eggshell influenced the amount and WL transmitted into the egg. The size and EC of eggs influenced the amount of light transmitted through the eggshell. EC is a good indicator for the ability of eggshell to transmit light.

      • KCI등재

        Design and experimental testing of a tactile sensor for self-compensation of contact error in soft tissue stiffness measurement

        Frank Efe Erukainure,Victor Parque,Mohsen A. Hassan,Ahmed M. R. Fath El-Bab 대한기계학회 2022 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.36 No.10

        The measurement of viscoelastic properties of soft tissues has become a research interest with applications in the stiffness estimation of soft tissues, sorting and quality control of postharvest fruit, and fruit ripeness estimation. This paper presents a tactile sensor configuration to estimate the stiffness properties of soft tissues, using fruit as case study. Previous stiffness-measuring tactile sensor models suffer from unstable and infinite sensor outputs due to irregularities and inclination angles of soft tissue surfaces. The proposed configuration introduces two low stiffness springs at the extreme ends of the sensor with one high stiffness spring in-between. This study also presents a closed form mathematical model that considers the maximum inclination angle of the tissue’s (fruit) surface, and a finite element analysis to verify the mathematical model, which yielded stable sensor outputs. A prototype of the proposed configuration was fabricated and tested on kiwifruit samples. The experimental tests revealed that the sensor’s output remained stable, finite, and independent on both the inclination angle of the fruit surface and applied displacement of the sensor. The sensor distinguished between kiwifruit at various stiffness and ripeness levels with an output error ranging between 0.18 % and 3.50 %, and a maximum accuracy of 99.81 %, which is reasonable and competitive compared to previous design concepts.

      • KCI등재

        Microstructure Evolution of AA1070 Aluminum Alloy Processed by Micro/Meso-Scale Equal Channel Angular Pressing

        Walaa Abdel‑Aziem,Atef Hamada,Takehiko Makino,Mohsen A. Hassan 대한금속·재료학회 2021 METALS AND MATERIALS International Vol.27 No.6

        The Micro/meso-forming of commercially pure aluminum, AA1070, processed at room temperature by equal channel angularpressing (ECAP) with a die channel angle of 90° through 4 deformation passes has been conducted. Microstructure features,such as grain size, misorientation angle distributions and the developed texture during the four deformation passes of micro/meso-ECAP have been investigated by Electron backscattering diffraction (EBSD) technique. Then, hardness measurementsover the cross-section of the processed samples were correlated with the EBSD analysis. EBSD scans revealed thatextended shear bands are formed and represent the microstructural feature induced during micro/meso-forming. Whereas,a non-uniform grain structure consisting of intensive low-angle grain boundaries was obtained in the first pass, a uniformultrafine-grained structure of high-angle grain boundaries (in the range of 1–2 μm) was achieved at the fourth pass. Consequently,a significant improvement in the hardness value to 65.3%, with respect to the starting material, was achieved due tothe enhancement of the fine grain structure. The texture analysis exhibited that the high plastic shear strain associated withmicro/meso-scale ECAP was capable to develop a weak texture in the flow plane compared to the starting texture.

      • KCI등재

        Effect of Bimodal-Sized Hybrid TiC–CNT Reinforcement on the Mechanical Properties and Coefficient of Thermal Expansion of Aluminium Matrix Composites

        Peter Nyanor,Omayma El‑Kady,Hossam M. Yehia,Atef S. Hamada,Mohsen A. Hassan 대한금속·재료학회 2021 METALS AND MATERIALS International Vol.27 No.4

        Aluminium (Al) matrix reinforced with carbon nanotubes (CNT), micron-sized titanium carbide (TiC) particles, and bimodal(nano + micron) hybrid TiC–CNT is fabricated by solution ball milling, followed by cold compaction and vacuum sinteringto improve the mechanical properties and reduce thermal expansion. The hardness, wear resistance, compressive strength andCTE of pure Al, 0.6 wt% CNT/Al, 10 wt% TiC/Al, and hybrid 10–0.6 wt% TiC–CNT/Al composites have been investigated inthis work. Analysis of strengthening mechanisms based on theoretical models, microstructure, and properties of constituentmaterials is performed. Microstructure analysis reveals an excellent distribution of the reinforcement phase and no new phaseformation in sintered composites. The hardness value of bimodal TiC–CNT reinforced Al composite is significantly higherthan monomodal TiC reinforced composite, reaching 2.3 times the hardness value of pure Al. Similarly, the wear resistanceimproved, and CTE reduced with CNT and TiC addition but is even significantly better in the hybrid reinforced composite. Experimental values of CTE show good agreement with the theoretical model. The strength and ductility of materials aremutually exclusive, but the compressive strength of pure Al has been doubled without significant loss in ductility throughthe use of bimodal-sized hybrid TiC–CNT reinforcement in this work.

      • KCI등재

        Effect of Carbon Nanotube (CNT) Content on the Hardness, Wear Resistance and Thermal Expansion of In-Situ Reduced Graphene Oxide (rGO)-Reinforced Aluminum Matrix Composites

        Peter Nyanor,Omayma El‑Kady,Hossam M. Yehia,Atef S. Hamada,Koichi Nakamura,Mohsen A. Hassan 대한금속·재료학회 2021 METALS AND MATERIALS International Vol.27 No.5

        Aluminum matrix composites reinforced with reduced graphene oxide (rGO) and hybrid of carbon nanotube (CNT) andrGO are fabricated by solution coating powder metallurgy process. The hardness, wear resistance and coefficient of thermalexpansion (CTE) of the reinforced aluminum composites and the associated microstructural changes with rGO range(0.2–0.6 wt%) and hybrids of 0.2 wt% CNT–rGO at different ratios have been investigated. The intensive microstructuralobservations show that rGO is adsorbed on Al particles and uniformly distributed in the Al matrix composites. The hardnessvalues of the composites increase significantly with rGO reinforcement exhibiting the maximum hardness at 0.4 wt% rGO.Compared with the hybrid composites CNT–rGO/Al counterparts fabricated by the same route and wt. percent of 0.2, thehardness values in the hybrid CNT–rGO increase considerably. Similar to the hardness, the results of wear tests also exhibitcorresponding variation in the values of the wear rates. The improvement in the wear resistance of the hybrid CNT–rGO /Alcomposite is pronounced in this work. Whereas the rGO reinforcements decrease significantly the wear rate of the aluminumbaseby 98%, the wear resistance of the corresponding hybrid CNT–rGO is significantly higher than that of the precedingcomposites. Maximum CTE reduction of 28% was recorded for hybrid CNT–rGO (1:1) reinforced composite.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼