RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Solar light-active S-scheme TiO2/In2S3 heterojunction photocatalyst for organic pollutants degradation

        Manjiri A. Mahadadalkar,Ganesh Dhakal,Sumanta Sahoo,Deivasigamani Ranjith Kumar,Marjorie Lara Baynosa,Van Quang Nguyen,Mostafa Saad Sayed,Abdelrahman M. Rabie,Woo Kyoung Kim,Jae-Jin Shim 한국공업화학회 2023 Journal of Industrial and Engineering Chemistry Vol.124 No.-

        Heterojunction TiO2/In2S3 composite photocatalyst was prepared using a simple low-temperature onestephydrothermal method. In2S3 nanosheets with a thickness of 1–5 nm were decorated with 20–30 nm TiO2 nanoparticles, forming a stable heterojunction. The electron transfer mechanism and bandalignment between TiO2 and In2S3 was studied using X-ray photoelectron spectroscopy and UV–visiblespectroscopy, which suggested the formation of an S-scheme heterojunction in TiO2/In2S3 composite. The TiO2/In2S3 composite with a 1:1 mole ratio showed 99.9% photocatalytic degradation ofRhodamine B within 20 minutes of solar light irradiation, which was better than the results for pristineTiO2, pristine In2S3, and their physical mixture, as well as any other previously reported materials of thesame kind. The as-prepared TiO2/In2S3 composite showed excellent stability (98% for Rhodamine B) evenafter five successive reuse cycles. This excellent performance of TiO2/In2S3 was attributed to the S-schemeheterojunction because of an internal electric field, columbic attraction, and band bending. A radical trappingstudy showed that superoxide radicals O2 contribute the most to the photocatalytic degradationof Rhodamine B followed by hydroxyl radicals (OH) and holes (hVB+ ). The use of a low synthesis temperatureand a simple, one-step formation method, with no secondary pollutants generated, makes this processan environmentally friendly and sustainable solution for cost-effective wastewater treatment,highlighting its future commercial applications.

      • SCISCIESCOPUS

        Hierarchical 3D ZnIn<sub>2</sub>S<sub>4</sub>/graphene nano-heterostructures: their <i>in situ</i> fabrication with dual functionality in solar hydrogen production and as anodes for lithium ion batteries

        Kale, Sayali B.,Kalubarme, Ramchandra S.,Mahadadalkar, Manjiri A.,Jadhav, Harsharaj S.,Bhirud, Ashwini P.,Ambekar, Jalinder D.,Park, Chan-Jin,Kale, Bharat B. The Royal Society of Chemistry 2015 Physical Chemistry Chemical Physics Vol.17 No.47

        <P>Hierarchical 3D ZnIn2S4/graphene (ZnIn2S4/Gr) nano-heterostructures were successfully synthesized using an in-situ hydrothermal method. The dual functionality of these nano-heterostructures i.e. for solar hydrogen production and lithium ion batteries has been demonstrated for the first time. The ZnIn2S4/Gr nano-heterostructures were optimized by varying the concentrations of graphene for utmost hydrogen production. An inspection of the structure shows the existence of layered hexagonal ZnIn2S4 wrapped in graphene. The reduction of graphene oxide (GO) to graphene was confirmed by Raman and XPS analyses. The morphological analysis demonstrated that ultrathin ZnIn2S4 nanopetals are dispersed on graphene sheets. The optical study reveals the extended absorption edge to the visible region due to the presence of graphene and hence is used as a photocatalyst to transform H2S into eco-friendly hydrogen using solar light. The ZnIn2S4/Gr nano-heterostructure that is comprised of graphene and ZnIn2S4 in a weight ratio of 1 : 99 exhibits enhanced photocatalytically stable hydrogen production i.e. B6365 mmole h(-1) under visible light irradiation using just 0.2 g of nano-heterostructure, which is much higher as compared to bare hierarchical 3D ZnIn2(S4). The heightened photocatalytic activity is attributed to the enhanced charge carrier separation due to graphene which acts as an excellent electron collector and transporter. Furthermore, the usage of nano-heterostructures and pristine ZnIn2S4 as anodes in lithium ion batteries confers the charge capacities of 590 and 320 mA h g(-1) after 220 cycles as compared to their initial reversible capacities of 645 and 523 mA h g(-1), respectively. These nano-heterostructures show high reversible capacity, excellent cycling stability, and high-rate capability indicating their potential as promising anode materials for LIBs. The excellent performance is due to the nanostructuring of ZnIn2S4 and the presence of a graphene layer, which works as a channel for the supply of electrons during the charge-discharge process. More significantly, their dual functionality in energy generation and storage is quite unique and commendable.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼