RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • In situ preparation of N–ZnO/graphene nanocomposites: excellent candidate as a photocatalyst for enhanced solar hydrogen generation and high performance supercapacitor electrode

        Bhirud, Ashwini,Sathaye, Shivaram,Waichal, Rupali,Park, Chan-Jin,Kale, Bharat The Royal Society of Chemistry 2015 Journal of Materials Chemistry A Vol.3 No.33

        <▼1><P>N–ZnO/GR nanocomposites are synthesized by an <I>in situ</I> wet chemical method which show superior photocatalytic H2 production and high supercapacitive performance.</P></▼1><▼2><P>We have demonstrated a facile <I>in situ</I> wet chemical method to synthesize nanostructured nitrogen doped ZnO/Graphene (N–ZnO/GR) nanocomposites for the first time. Nitrogen doped ZnO over graphene (N–ZnO/GR) was studied using various concentrations of graphene. During the synthesis of N–ZnO/GR nanocomposites, <I>in situ</I> formation of graphene <I>via</I> GO reduction and formation of 4–9 nm N–ZnO have been demonstrated. The composite N–ZnO/GR absorbs in the visible region and this property is used for the photocatalytic reaction to transform hazardous H2S waste into eco-friendly hydrogen using solar light. The N–ZnO/GR nanocomposite with 0.3% graphene exhibits an enhanced photocatalytic stable hydrogen production rate <I>i.e.</I> ∼5072 μmol h<SUP>−1</SUP> under visible light irradiation. It is noteworthy that the N–ZnO/GR electrode exhibits a high specific capacitance of 555 F g<SUP>−1</SUP> and excellent cyclic performance with nearly 96.20% capacity retention after 2000 cycles at a current density of 10 A g<SUP>−1</SUP>. These results indicate great potential applications of N–ZnO/GR in developing high hydrogen production and supercapacitors with high energy and power densities.</P></▼2>

      • In-situ preparation of N-TiO2/graphene nanocomposite and its enhanced photocatalytic hydrogen production by H2S splitting under solar light.

        Bhirud, Ashwini P,Sathaye, Shivaram D,Waichal, Rupali P,Ambekar, Jalindar D,Park, Chan-J,Kale, Bharat B RSC Pub 2015 Nanoscale Vol.7 No.11

        <P>Highly monodispersed nitrogen doped TiO2 nanoparticles were successfully deposited on graphene (N-TiO2/Gr) by a facile in-situ wet chemical method for the first time. N-TiO2/Gr has been further used for photocatalytic hydrogen production using a naturally occurring abundant source of energy i.e. solar light. The N-TiO2/Gr nanocomposite composition was optimized by varying the concentrations of dopant nitrogen and graphene (using various concentrations of graphene) for utmost hydrogen production. The structural, optical and morphological aspects of nanocomposites were studied using XRD, UV-DRS, Raman, XPS, FESEM, and TEM. The structural study of the nanocomposite shows existence of anatase N-TiO2. Further, the details of the components present in the composition were confirmed with Raman and XPS. The morphological study shows that very tiny, 7-10 nm sized, N-TiO2 nanoparticles are deposited on the graphene sheet. The optical study reveals a drastic change in absorption edge and consequent total absorption due to nitrogen doping and presence of graphene. Considering the extended absorption edge to the visible region, these nanocomposites were further used as a photocatalyst to transform hazardous H2S waste into eco-friendly hydrogen using solar light. The N-TiO2/Gr nanocomposite with 2% graphene exhibits enhanced photocatalytic stable hydrogen production i.e. 5941 μmol h(-1) under solar light irradiation using just 0.2 gm nanocomposite, which is much higher as compared to P25, undoped TiO2 and TiO2/Gr nanocomposite. The enhancement in the photocatalytic activity is attributed to 'N' doping as well as high specific surface area and charge carrier ability of graphene. The recycling of the photocatalyst shows a good stability of the nanocomposites. This work may provide new insights to design other semiconductor deposited graphene novel nanocomposites as a visible light active photocatalyst.</P>

      • SCISCIESCOPUS

        Hierarchical 3D ZnIn<sub>2</sub>S<sub>4</sub>/graphene nano-heterostructures: their <i>in situ</i> fabrication with dual functionality in solar hydrogen production and as anodes for lithium ion batteries

        Kale, Sayali B.,Kalubarme, Ramchandra S.,Mahadadalkar, Manjiri A.,Jadhav, Harsharaj S.,Bhirud, Ashwini P.,Ambekar, Jalinder D.,Park, Chan-Jin,Kale, Bharat B. The Royal Society of Chemistry 2015 Physical Chemistry Chemical Physics Vol.17 No.47

        <P>Hierarchical 3D ZnIn2S4/graphene (ZnIn2S4/Gr) nano-heterostructures were successfully synthesized using an in-situ hydrothermal method. The dual functionality of these nano-heterostructures i.e. for solar hydrogen production and lithium ion batteries has been demonstrated for the first time. The ZnIn2S4/Gr nano-heterostructures were optimized by varying the concentrations of graphene for utmost hydrogen production. An inspection of the structure shows the existence of layered hexagonal ZnIn2S4 wrapped in graphene. The reduction of graphene oxide (GO) to graphene was confirmed by Raman and XPS analyses. The morphological analysis demonstrated that ultrathin ZnIn2S4 nanopetals are dispersed on graphene sheets. The optical study reveals the extended absorption edge to the visible region due to the presence of graphene and hence is used as a photocatalyst to transform H2S into eco-friendly hydrogen using solar light. The ZnIn2S4/Gr nano-heterostructure that is comprised of graphene and ZnIn2S4 in a weight ratio of 1 : 99 exhibits enhanced photocatalytically stable hydrogen production i.e. B6365 mmole h(-1) under visible light irradiation using just 0.2 g of nano-heterostructure, which is much higher as compared to bare hierarchical 3D ZnIn2(S4). The heightened photocatalytic activity is attributed to the enhanced charge carrier separation due to graphene which acts as an excellent electron collector and transporter. Furthermore, the usage of nano-heterostructures and pristine ZnIn2S4 as anodes in lithium ion batteries confers the charge capacities of 590 and 320 mA h g(-1) after 220 cycles as compared to their initial reversible capacities of 645 and 523 mA h g(-1), respectively. These nano-heterostructures show high reversible capacity, excellent cycling stability, and high-rate capability indicating their potential as promising anode materials for LIBs. The excellent performance is due to the nanostructuring of ZnIn2S4 and the presence of a graphene layer, which works as a channel for the supply of electrons during the charge-discharge process. More significantly, their dual functionality in energy generation and storage is quite unique and commendable.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼