RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Thermomechanical material parameters characterization of the superalloy PN 3601669-7 under low-velocity impacts

        Abdelkader Nour,Samir Lecheb,Nouredine Chikh,M. Ouali Si-Chaïb 대한기계학회 2011 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.25 No.7

        This work concerns the characterization of the thermodynamic behavior of the superalloy Airsist 215 (PN 3601669-7) containing cobalt. Such superalloys are used in aeronautical construction, in the hot parts of the turbine. They are frequently used for the production of the paddles. The parts in service are subjected to dynamic solicitations and thermal fluctuations over the course of time. They are responsible for modification and degradation of material properties. This can lead to the appearance of cracks and, in the long term, to the rupture of these parts. In this paper, a preliminary physical study is made on the appearance of the cracks, followed by experiments using shocks at ambient temperature and under a heating situation which simulates combustion. It is found that these dynamic loads have a significant impact on the development of the cracks that appear on the segments of the turbine nozzle. The study is devoted to the elastic shock of Hertz-Boussinesq extended to viscoelastic bodies by direct convolution of Riemann-Stielges. The interest resides in the local convolution and the distribution of stresses in the contact zone. The shock excitation method includes a deduced force in the load and disload phases. This force is an impulse which approaches a Dirac function. The sample can be modeled approximately by a system of one degree of freedom for natural frequency, damping and transfer function. The spectral response of the specified shock allows calculation of the damping. Every point of this spectrum gives the response for the linear system of the transfer function. Then, viscoelastic shock parameters are deduced.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼