RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCOPUSKCI등재

        European Approaches to Work-Related Stress: A Critical Review on Risk Evaluation

        Zoni, Silvia,Lucchini, Roberto G. Occupational Safety and Health Research Institute 2012 Safety and health at work Vol.3 No.1

        In recent years, various international organizations have raised awareness regarding psychosocial risks and work-related stress. European stakeholders have also taken action on these issues by producing important documents, such as position papers and government regulations, which are reviewed in this article. In particular, 4 European models that have been developed for the assessment and management of work-related stress are considered here. Although important advances have been made in the understanding of work-related stress, there are still gaps in the translation of this knowledge into effective practice at the enterprise level. There are additional problems regarding the methodology in the evaluation of work-related stress. The European models described in this article are based on holistic, global and participatory approaches, where the active role of and involvement of workers are always emphasized. The limitations of these models are in the lack of clarity on preventive intervention and, for two of them, the lack of instrument standardization for risk evaluation. The comparison among the European models to approach work-related stress, although with limitations and socio-cultural differences, offers the possibility for the development of a social dialogue that is important in defining the correct and practical methodology for work stress evaluation and prevention.

      • KCI등재

        APPLICATION OF A THERMODYNAMIC MODEL WITH A COMPLEX CHEMISTRY TO A CYCLE RESOLVED KNOCK PREDICTION ON A SPARK IGNITION OPTICAL ENGINE

        G. D’ERRICO,T. LUCCHINI,S. MEROLA,C. TORNATORE 한국자동차공학회 2012 International journal of automotive technology Vol.13 No.3

        A combination of experimental and numerical methodologies is proposed for the investigation of knocking in spark ignition engines to aid in better understanding the physical and chemical processes that occur and to exploit the capabilities of a developed computational tool. The latter consists of a thermo-fluid dynamics model, which is part of an advanced 1-D fluid dynamics code for the simulation of the entire engine, and a complex chemistry model, which can be embedded into the thermo-fluid dynamics model using the same integration algorithm for the conservation equations and the reacting species. Their mutual interaction in the energy balance will be considered. The experimental activity was carried out in the combustion chamber of an optically accessible, single-cylinder P.F.I. engine equipped with a commercial head. The experimental data consisted of optical measurements correlated to the combustion and auto-ignition processes within the cylinder. The optical measurements were based on 2-D digital imaging, UV visible natural emission spectroscopy and the chemiluminescence of radical species (OH and HCO). The engine parameters, the pressure signals of the related data and optical acquisition are compared on an individual cycle basis in the simulation by running the engine at a constant speed and varying the spark advance from normal combustion to heavy knock conditions.

      • KCI등재

        New optimum distribution of lateral strength of shear-type buildings for uniform damage

        Jesús Donaire-Á vila,Andrea Lucchini,Amadeo Benavent-Climent,Fabrizio Mollaioli 국제구조공학회 2020 Structural Engineering and Mechanics, An Int'l Jou Vol.76 No.3

        The seismic design of conventional frame structures is meant to enhance plastic deformations at beam ends and prevent yielding in columns. To this end, columns are made stronger than beams. Yet yielding in columns cannot be avoided with the column-to-beam strength ratios (about 1.3) prescribed by seismic codes. Preventing plastic deformations in columns calls for ratios close to 4, which is not feasible for economic reasons. Furthermore, material properties and the rearrangement of geometric shapes inevitably make the distribution of damage among stories uneven. Damage in the i-th story can be characterized as the accumulated plastic strain energy (Wpi) normalized by the product of the story shear force (Qyi) and drift (yi) at yielding. Past studies showed that the distribution of the plastic strain energy dissipation demand, Wpi /Wpj, can be evaluated from the deviation of Qyi with respect to an “optimum value” that would make the ratio Wpi/(Qyiyi) —i.e. the damage— equal in all stories. This paper investigates how the soil type and ductility demand affect the optimum lateral strength distribution. New optimum lateral strength distributions are put forth and compared with others proposed in the literature.

      • KCI등재

        A new method to predict the critical incidence angle for buildings under near-fault motions

        Paolo E. Sebastiani,Laura Liberatore,Andrea Lucchini,Fabrizio Mollaioli 국제구조공학회 2018 Structural Engineering and Mechanics, An Int'l Jou Vol.68 No.5

        It is well known that the incidence angle of seismic excitation has an influence on the structural response of buildings, and this effect can be more significant in the case of near-fault signals. However, current seismic codes do not include detailed requirements regarding the direction of application of the seismic action and they have only recently introduced specific provisions about near-fault earthquakes. Thus, engineers have the task of evaluating all the relevant directions or the most critical conditions case by case, in order to avoid underestimating structural demand. To facilitate the identification of the most critical incidence angle, this paper presents a procedure which makes use of a two-degree of freedom model for representing a building. The proposed procedure makes it possible to avoid the extensive computational effort of multiple dynamic analyses with varying angles of incidence of ground motion excitation, which is required if a spatial multi-degree of freedom model is used for representing a building. The procedure is validated through the analysis of two case studies consisting of an eight- and a six-storey reinforced concrete frame building, selected as representative of existing structures located in Italy. A set of 124 near-fault ground motion records oriented along 8 incidence angles, varying from 0 to 180 degrees, with increments of 22.5 degrees, is used to excite the structures. Comparisons between the results obtained with detailed models of the two structures and the proposed procedure are used to show the accuracy of the latter in the prediction of the most critical angle of seismic incidence.

      • SCISCIE

        Conditional moment closure modelling for HCCI with temperature inhomogeneities

        Salehi, F.,Talei, M.,Hawkes, E.R.,Yoo, C.S.,Lucchini, T.,D'Errico, G.,Kook, S. Elsevier 2015 Proceedings of the Combustion Institute Vol.35 No.3

        This paper presents an approach for modelling combustion in homogeneous charge compression ignition (HCCI) conditions based on the first order conditional moment closure (CMC) method. The model is implemented into the open source C++ computational fluid dynamic (CFD) code known as OpenFOAM. Direct numerical simulations (DNSs) are used to evaluate the performance of the CFD-CMC solver. In the two-dimensional (2D) DNS cases, ignition of a lean n-heptane/air mixture with thermal inhomogeneities is simulated for nine cases, with two different mean temperatures and several different levels of thermal stratification. Results from the CFD-CMC solver are in excellent agreement with the DNS for cases which exhibit a spontaneous sequential ignition mode of combustion whereas for the cases in which a mixed mode of deflagration and spontaneous ignition exists, the CMC underpredicts the ignition delay. Further investigation using the DNS data demonstrates that this discrepancy is primarily attributed to the first order closure assumption. Conditional fluctuations are found to be more significant in the case with deflagrations. Further analysis of the DNS shows that scalar dissipation fluctuations are the cause of conditional fluctuations.

      • Orientation-dependent stereo Wigner time delay and electron localization in a small molecule

        Vos, J.,Cattaneo, L.,Patchkovskii, S.,Zimmermann, T.,Cirelli, C.,Lucchini, M.,Kheifets, A.,Landsman, A. S.,Keller, U. American Association for the Advancement of Scienc 2018 Science Vol.360 No.6395

        <P>Attosecond metrology of atoms has accessed the time scale of the most fundamental processes in quantum mechanics. Transferring the time-resolved photoelectric effect from atoms to molecules considerably increases experimental and theoretical challenges. Here we show that orientation-and energy-resolved measurements characterize the molecular stereo Wigner time delay. This observable provides direct information on the localization of the excited electron wave packet within the molecular potential. Furthermore, we demonstrate that photoelectrons resulting from the dissociative ionization process of the CO molecule are preferentially emitted from the carbon end for dissociative (2)Sigma states and from the center and oxygen end for the (2)Pi states of the molecular ion. Supported by comprehensive theoretical calculations, this work constitutes a complete spatially and temporally resolved reconstruction of the molecular photoelectric effect.</P>

      • Angular dependence of photoemission time delay in helium

        Heuser, Sebastian,Jimé,nez Galá,n, Á,lvaro,Cirelli, Claudio,Marante, Carlos,Sabbar, Mazyar,Boge, Robert,Lucchini, Matteo,Gallmann, Lukas,Ivanov, Igor,Kheifets, Anatoli S.,Dahlstr&oum American Physical Society 2016 Physical Review A Vol.94 No.6

        <P>Time delays of electrons emitted from an isotropic initial state with the absorption of a single photon and leaving behind an isotropic ion are angle independent. Using an interferometric method involving XUV attosecond pulse trains and an IR-probe field in combination with a detection scheme, which allows for full three-dimensional momentum resolution, we show that measured time delays between electrons liberated from the 1s(2) spherically symmetric ground state of helium depend on the emission direction of the electrons relative to the common linear polarization axis of the ionizing XUV light and the IR-probing field. Such time delay anisotropy, for which we measure values as large as 60 as, is caused by the interplay between final quantum states with different symmetry and arises naturally whenever the photoionization process involves the exchange of more than one photon. With the support of accurate theoretical models, the angular dependence of the time delay is attributed to small phase differences that are induced in the laser-driven continuum transitions to the final states. Since most measurement techniques tracing attosecond electron dynamics involve the exchange of at least two photons, this is a general and significant effect that must be taken into account in all measurements of time delays involving photoionization processes.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼