RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Mapped relationships between pier settlement and rail deformation of bridges with CRTS III SBT

        Lizhong Jiang,Lili Liu,Wangbao Zhou,Xiang Liu,Chao Liu,Ping Xiang 국제구조공학회 2020 Steel and Composite Structures, An International J Vol.36 No.4

        To study the rail mapped deformation caused by the pier settlement of simply - supported bridges with China Railway Track System Ⅲ (CRTS Ⅲ) slab ballastless track (SBT) system under the mode of non-longitudinal connection ballastless track slab, this study derived an analytical solution to the mapped relationships between pier settlement and rail deformation based on the interlayer interaction mechanism of rail-pier and principle of stationary potential energy. The analytical calculation results were compared with the numerical results obtained by ANSYS finite element calculation, thus verifying the accuracy of analytical method. A parameter analysis was conducted on the key factors in rail mapped deformation such as pier settlement, fastener stiffness, and self-compacting concrete (SCC) stiffness of filling layer. The results indicate that rail deformation is approximately proportional to pier settlement. The smaller the fastener stiffness, the smoother the rail deformation curve and the longer the rail deformation area is. With the increase in the stiffness of SCC filling layer, the maximum positive deformation of rail gradually decreases, and the maximum negative deformation gradually increases. The deformation of rail caused by the pier settlement of common-span bridge structures will generate low-frequency excitation on high-speed trains.

      • A stochastic finite element method for dynamic analysis of bridge structures under moving loads

        Xiang Liu,Lizhong Jiang,Ping Xiang,Zhipeng Lai,Yuntai Zhang,Lili Liu 국제구조공학회 2022 Structural Engineering and Mechanics, An Int'l Jou Vol.82 No.1

        In structural engineering, the material properties of the structures such as elastic modulus, shear modulus, density, and size may not be deterministic and may vary at different locations. The dynamic response analysis of such structures may need to consider these properties as stochastic. This paper introduces a stochastic finite element method (SFEM) approach to analyze moving loads problems. Firstly, Karhunen-Loéve expansion (KLE) is applied for expressing the stochastic field of material properties. Then the mathematical expression of the random field is substituted into the finite element model to formulate the corresponding random matrix. Finally, the statistical moment of the dynamic response is calculated by the point estimation method (PEM). The accuracy and efficiency of the dynamic response obtained from the KLE-PEM are demonstrated by the example of a moving load passing through a simply supported Euler-Bernoulli beam, in which the material properties (including elastic modulus and density) are considered as random fields. The results from the KLE-PEM are compared with those from the Monte Carlo simulation. The results demonstrate that the proposed method of KLE-PEM has high accuracy and efficiency. By using the proposed SFEM, the random vertical deflection of a high-speed railway (HSR) bridge is analyzed by considering the random fields of material properties under the moving load of a train.

      • KCI등재후보

        Double DOF control of an electromechanical integrated toroidal drive

        Lizhong Xu,Xin Liu 국제구조공학회 2007 Smart Structures and Systems, An International Jou Vol.3 No.1

        The electromechanical integrated toroidal drive is a new drive system. For the control of the drive, the torque fluctuation and the steady-state errors should be removed and the fast response to the input change should be achieved. In this paper, the torque fluctuation of the drive system is analyzed and expressed as Fourier series forms. The transfer function of the torque control for the drive system is derived from its electromechanical coupled dynamic equations. A 2-DOF control method is used to control the drive system. Using definite parameter relationship of the 2-DOF control system, the steady errors of the torque control for the drive system is removed. Influences of the drive parameters on the control system are investigated. Using proper drive parameters, the response time of the control system is reduced and the quick torque response of the drive system is realized. Using a compensated input voltage, the torque fluctuation of the drive system is removed as well. The compensated input voltage can be obtained from the torque fluctuation equation and the transfer function. These research results are useful for designing control system of the new drive.

      • KCI등재

        Distortional Buckling Analysis of I-Steel Concrete Composite Beams Subjected to Hogging Moment

        Lili Liu,Lizhong Jiang,Chun-dan Li,Wang-Bao Zhou,Lei-xin Nie 한국강구조학회 2022 International Journal of Steel Structures Vol.22 No.3

        Bending-torsional distortion buckling is one of the most critical buckling modes of steel–concrete composite beams when they are working under hogging moment. The rotational and lateral restraint stiff ness provided by the steel web to the steel bottom fl ange are the key factors to determine this form of buckling. Firstly, the formula for solving the elastic rotational restraint stiff ness of the composite fl ange of steel beam upper fl ange and concrete slab to the steel web is derived. Then, the equivalent lateral and rotational restraint stiff ness of the steel bottom fl ange subjected to hogging moment are thoroughly studied. Considering the rotation restraint eff ect of the composite fl ange, this paper provides the calculation formula for the critical bending moment of I-steel concrete composite beams (I-SCCB) under hogging moment. Fifteen examples are considered to calculate the critical bending moment of the I-SCCB under hogging moment with the simplifi ed analytical method introduced in this paper. The results are compared with the ones derived by ANSYS numerical analyses and relevant research of other scholars. The infl uence of the arrangement of the shear studs on the critical bending moment of the I-SCCB is investigated. It is concluded that the results given by the simplifi ed analytical method are in good agreement with the ones obtained by the ANSYS fi nite element numerical method. Both methods show that the critical load of the distortional buckling of the I-SCCB under hogging moment is less aff ected by the member’s length. The critical bending moment of distortional buckling of the I-SCCB signifi cantly increases with the presence of shear studs. However, once shear studs are used, it tends to be stable with the increase of equivalent restrained torsional rotational stiff ness at the top edge of the steel web.

      • SCIESCOPUS

        Double DOF control of an electromechanical integrated toroidal drive

        Xu, Lizhong,Liu, Xin Techno-Press 2007 Smart Structures and Systems, An International Jou Vol.3 No.1

        The electromechanical integrated toroidal drive is a new drive system. For the control of the drive, the torque fluctuation and the steady-state errors should be removed and the fast response to the input change should be achieved. In this paper, the torque fluctuation of the drive system is analyzed and expressed as Fourier series forms. The transfer function of the torque control for the drive system is derived from its electromechanical coupled dynamic equations. A 2-DOF control method is used to control the drive system. Using definite parameter relationship of the 2-DOF control system, the steady errors of the torque control for the drive system is removed. Influences of the drive parameters on the control system are investigated. Using proper drive parameters, the response time of the control system is reduced and the quick torque response of the drive system is realized. Using a compensated input voltage, the torque fluctuation of the drive system is removed as well. The compensated input voltage can be obtained from the torque fluctuation equation and the transfer function. These research results are useful for designing control system of the new drive.

      • Evaluation of optimal ground motion intensity measures of high-speed railway train running safety on bridges during earthquakes

        Xiang Liu,Lizhong Jiang,Ping Xiang,Yulin Feng,Zhipeng Lai,Xiaoyun Sun 국제구조공학회 2022 Structural Engineering and Mechanics, An Int'l Jou Vol.81 No.2

        Due to the large number of railway bridges along China's high-speed railway (HSR) lines, which cover a wide area with many lines crossing the seismic zone, the possibility of a HSR train running over a bridge when an earthquake occurs is relatively high. Since the safety performance of the train will be threatened, it is necessary to study the safety of trains running over HSR bridges during earthquakes. However, ground motion (GM) is highly random and selecting the appropriate groundmotion intensity measures (IMs) for train running safety analysis is not trivial. To deal this problem, a model of a coupled trainbridge system under seismic excitation was established and 104 GM samples were selected to evaluate the correlation between 16 different IMs and train running safety over HSR bridges during earthquakes. The results show that spectral velocity (SvT1) and displacement (SdT1) at the fundamental period of the structure have good correlation with train running safety for mediumand long-period HSR bridges, and velocity spectrum intensity (VSI) and Housner intensity (HI) have good correlation for a wide range of structural periods. Overall, VSI and HI are the optimal IMs for safety analysis of trains running over HSR bridges during earthquakes. Finally, based on VSI and HI, the IM thresholds of an HSR bridge at different speed were analyzed.

      • KCI등재

        Joint Adaptive Combining and Variable Tap-Length Multiuser Detector for Underwater Acoustic Cooperative Communication

        ( Zhiyong Liu ),( Yinghua Wang ),( Lizhong Song ),( Yinyin Wang ),( Fusheng Dai ) 한국인터넷정보학회 2018 KSII Transactions on Internet and Information Syst Vol.12 No.1

        In this paper, we propose a joint adaptive combining and variable tap-length multiuser detector (MUD) for amplify-and-forward (AF) underwater acoustic cooperative interleave-division multiple access (IDMA) communication system. The proposed MUD jointly realizes tap-length adjustment, adaptive combining, and multiuser detection. In contrast to the existing methods, the proposed detector can adaptively combine the received signals from different nodes at destination, and does not need the assumption that full and perfect channel state information (CSI) of all the links at the receiver is known. Moreover, the proposed detector can adaptively adjust the tap coefficient vector and tap-length of each branch according to the specific channel profile of each branch. Simulation results validate the feasibility and show the advantages of the proposed detector against existing counterparts.

      • Critical coupling span number in high-speed railway simply supported beam bridge

        Yuntai Zhang,Lizhong Jiang,Wang-Bao Zhou,Yulin Feng,Xiang Liu,Zhipeng Lai 국제구조공학회 2021 Smart Structures and Systems, An International Jou Vol.28 No.1

        In long-distance railways, some particular spans of high-speed railway simply supported beam bridges (HSRSBs) are commonly selected as the target structure. The target structure is the part of interest for the study and intended to be analyzed. Due to longitudinal constraints of the track system, the target structure is tightly coupled with other spans within certain range, and is affected by the coupled spans under longitudinal earthquake condition. A massive amount of time-consuming computation is required to determine the coupling span number using current finite element models. In an effort to overcome this challenge, an equivalent method for the longitudinal constraints of the track system is proposed, which greatly reduces the complexity of finite element model while retaining calculation precision. The coupling span number was determined by seismic analyses of a large number of cases using equivalent finite element models. Moreover, the influence of pier height and bottom pier stiffness on coupling span number was studied. Based on the relationship between the equivalent boundary sensitivity critical point and coupling span number, a method to quickly obtain coupling span number of the target structure in arbitrary HSRSB was constructed.

      • Analytical evaluation of the influence of vertical bridge deformation on HSR longitudinal continuous track geometry

        Zhipeng Lai,Lizhong Jiang,Xiang Liu,Yuntai Zhang,Tuo Zhou 국제구조공학회 2022 Steel and Composite Structures, An International J Vol.44 No.4

        A high-speed railway (HSR) bridge may undergo long-term deformation due to the degradation of material stiffness, or foundation settlement during its service cycle. In this study, an analytical model is set up to evaluate the influence of this longterm vertical bridge deformation on the track geometry. By analyzing the structural characteristics of the HSR track-bridge system, the energy variational principle is applied to build the energy functionals for major components of the track-bridge system. By further taking into account the interlayer’s force balancing requirements, the mapping relationship between the deformation of the track and the one of the bridge is established. In order to consider the different behaviors of the interlayers in compression and tension, an iterative method is introduced to update the mapping relationship. As for the validation of the proposed mapping model, a finite element model is created to compare the numerical results with the analytical results, which show a good agreement. Thereafter, the effects of the interlayer’s different properties of tension and compression on the mapping deformations are further evaluated and discussed.

      • KCI등재후보

        An analytical solution to the vibration characteristics for continuous girder bridge-track coupling system and its application

        Yulin Feng,Lizhong Jiang,Wangbao Zhou,Yuntai Zhang,Xiang Liu 국제구조공학회 2021 Structural Engineering and Mechanics, An Int'l Jou Vol.77 No.5

        To study the vibration characteristics of a high-speed railway continuous girder bridge-track coupling system (HSRCBT), a coupling vibration analysis model of an m-span continuous girder bridge-subgrade-track system with n-span approach bridge was established. The model was based on the energy and its variational method, where both the interlaminar slip and shear deformation effects were considered. In addition, the free vibration equations and natural boundary conditions of the HSRCBT were derived. Further, according to the coordination principle of deformation and mechanics, an analytical method for calculating the natural vibration frequencies of the HSRCBT was obtained. Three typical bridge-subgrade-track coupling systems of high-speed railway were taken and the results of finite element analysis were compared to those of the analytical method. The errors between the simulation results and calculated values of the analytical method were less than 3%, thus verifying the analytical method proposed in this paper. Finally, the analytical method was used to investigate the influence of the number of the approach bridge spans and the interlaminar stiffness on the natural vibration characteristics of the HSRCBT based on the degree of sensitivity. The results suggest the approach bridges have a critical number of spans and in general, the precision requirements of the analysis could be met by using 6-span approach bridges. The interlaminar vertical compressive stiffness has very little influence on the low-order natural vibration frequency of HSRCBT, but does have a significant influence on higher-order natural vibration frequency. As the interlaminar vertical compressive stiffness increases, the degree of sensitivity to interlaminar stiffness of each of the HSRCBT natural vibration characteristics decrease and gradually approach zero.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼