RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        The Effects of Glucagon-like Peptide-2 on the Tight Junction and Barrier Function in IPEC-J2 Cells through Phosphatidylinositol 3-kinase-Protein Kinase B-Mammalian Target of Rapamycin Signaling Pathway

        Yu, Changsong,Jia, Gang,Deng, Qiuhong,Zhao, Hua,Chen, Xiaoling,Liu, Guangmang,Wang, Kangning Asian Australasian Association of Animal Productio 2016 Animal Bioscience Vol.29 No.5

        Glucagon-like peptide-2 (GLP-2) is important for intestinal barrier function and regulation of tight junction (TJ) proteins, but the intracellular mechanisms of action remain undefined. The purpose of this research was to determine the protective effect of GLP-2 mediated TJ and transepithelial electrical resistance (TER) in lipopolysaccharide (LPS) stressed IPEC-J2 cells and to test the hypothesis that GLP-2 regulate TJ and TER through the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt)-mammalian target of rapamycin (mTOR) signaling pathway in IPEC-J2 cells. Wortmannin and LY294002 are specific inhibitors of PI3K. The results showed that $100{\mu}g/mL$ LPS stress decreased TER and TJ proteins occludin, claudin-1 and zonula occludens protein 1 (ZO-1) mRNA, proteins expressions (p<0.01) respectively. GLP-2 (100 nmol/L) promote TER and TJ proteins occludin, claudin-1, and zo-1 mRNA, proteins expressions in LPS stressed and normal IPEC-J2 cells (p<0.01) respectively. In normal cells, both wortmannin and LY294002, PI3K inhibitors, prevented the mRNA and protein expressions of Akt and mTOR increase induced by GLP-2 (p<0.01) following with the significant decreasing of occludin, claudin-1, ZO-1 mRNA and proteins expressions and TER (p<0.01). In conclusion, these results indicated that GLP-2 can promote TJ's expression and TER in LPS stressed and normal IPEC-J2 cells and GLP-2 could regulate TJ and TER through the PI3K/Akt/mTOR pathway.

      • KCI등재

        Modeling net energy requirements of 2 to 3-week-old Cherry Valley ducks

        Yang Ting,Yu Lexiao,Wen Min,Zhao Hua,Chen Xiaoling,Liu Guangmang,Tian Gang,Cai Jingyi,Jia Gang 아세아·태평양축산학회 2020 Animal Bioscience Vol.33 No.10

        Objective: A total of three hundred unsexed ducks were utilized to estimate net energy requirements of maintenance (NEm) and weight gain (NEg) for 2 to 3-week-old Cherry Valley ducks and to establish a model equation to predict NE requirements using the factorial method. Methods: To determine the apparent metabolizable energy (AME) of the diet, fifty 7-day-old ducks at approximately equal body weights (BWs) were randomly assigned into five groups that were fed at different levels (ad libitum, 85%, 75%, 65%, and 55% of ad libitum intake), and the endogenous acid-insoluble ash as indigestible marker. The two hundred and fifty 7-day-old ducks were used for a comparative slaughter experiment. At the beginning of the experiment, ten ducks were sacrificed to determine the initial body composition and energy content. The remaining ducks were randomly assigned into five groups (same as metabolic experiment). Ducks of the ad libitum group were slaughtered at 14 and 21-day-old. At the end of the experiment, two ducks were selected from each replicate and slaughtered to determine the body composition and energy content. Results: The results of the metabolizable experiment showed AME values of 13.43 to 13.77 MJ/kg for ducks at different feed intakes. The results of the comparative slaughter experiment showed the NEm value for 2 to 3-week-old Cherry Valley ducks was 549.54 kJ/kg of BW0.75/d, and the NEg value was 10.41 kJ/g. The deposition efficiency values of fat (Kf) and crude protein (Kp) were 0.96 and 0.60, respectively, and the values of efficiency of energy utilization (Kg) and maintenance efficiency (Km) were 0.75 and 0.88, respectively. Conclusion: The equation for the prediction of NE requirements for 2 to 3-week-old Cherry Valley ducks was the following: NE = 549.54 BW0.75+10.41 ΔW, where ΔW is the weight gain (g).

      • SCIESCOPUSKCI등재

        Effects of dietary spermine supplementation on cell cycle, apoptosis, and amino acid transporters of the thymus and spleen in piglets

        Cao, Wei,Wu, Xianjian,Jia, Gang,Zhao, Hua,Chen, Xiaoling,Wu, Caimei,Cai, Jingyi,Wang, Jing,Liu, Guangmang Asian Australasian Association of Animal Productio 2018 Animal Bioscience Vol.31 No.8

        Objective: This study investigated whether spermine supplementation could regulate cell cycle, apoptosis, and amino acid transporter-related genes expression in the thymus and spleen of early weaned piglets. Methods: Eighty female piglets were randomly distributed to receive adequate nutrients supplemented with spermine (0.4 mmol/kg body weight/24 h) or to be provided with restricted nourishment supplemented with normal saline for 7 h or 3, 6, or 9 d in pairs. Results: Regardless of administration time, spermine supplementation significantly up-regulated cyclin A2 gene expression but down-regulated p21 and cyclin D3 mRNA levels in the thymus and spleen and reduced cyclin E2 gene expression in the thymus of piglets (p<0.05). Irrespective of the treatment period, the reduced Bax and caspase-3 gene expressions and improved Bcl-2 mRNA level were observed in the thymus and spleen of spermine-administrated piglets (p<0.05). Regardless of supplementation time, spermine intake significantly enhanced the expressions of amino acid transporter-related genes (SLC1A1, SLC1A5, SLC7A1, SLC7A7, and SLC15A1) in both thymus and spleen, as well as SLC7A9 in the spleen of piglets (p<0.05). In addition, extended spermine administration also markedly promoted cell proliferation, depressed apoptosis and modulated amino acid transport (p<0.05), and such effects were the greatest during prolonged spermine supplementation (6 d) compared to the other time periods (p<0.05). Conclusion: Spermine supplementation may regulate cell cycle during the G1/S phase, suppress apoptosis and modulate amino acid transport. A period of 6 d of spermine supplementation is required to produce the optimal effects on nutritional implications.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼