RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Flexible Capillary Microfluidic Devices Based on Surface-Energy Modified Polydimethylsiloxane and Polymethylmethacrylate with Room-Temperature Chemical Bonding

        Lai Thi Ngoc Huyen,홍석주,TranQuangTrung,Montri Meeseepong,김아리,이내응 한국바이오칩학회 2023 BioChip Journal Vol.17 No.1

        Polydimethylsiloxane (PDMS) has been widely used for the rapid prototyping of microfluidic devices for biosensor cartridges. However, using PDMS to prototype capillary-driven microfluidic devices is often limited by the difficulty of maintaining the surface energy of surface-treated PDMS for an extended period in addition to the degradation of the biosensing elements during the bonding process at elevated temperature. Herein, prototyping of a flexible capillary microfluidic channel (FCMC) device based on the room-temperature bonding of the surface energy-modified PDMS (m-PDMS) microfluidic channel and a thermoplastic lid, polymethylmethacrylate (PMMA), is introduced for prolonged control of passive liquid flow characteristics. The m-PDMS was fabricated by blending polydimethylsiloxane-ethylene oxide (60–70%) block copolymer (PDMS-b-PEO) additive with pre-PDMS, of which the water contact angles could be controlled between 38.5° and 78.5° by adjusting the ratio of the two components. Room-temperature bonding of the m-PDMS and PMMA sheets functionalized by 3-glycidoxypropyltrimethoxysilane and aminopropyltriethoxysilane, respectively, was introduced to fabricate the FCMC devices via the formation of a stable linker epoxy-amine without the requirement of elevated temperatures. The FCMC device possessed longevity to passively drive liquid in the channel for 2 months under ambient conditions due to the prolonged stable hydrophilicity of m-PDMS. The proposed approaches provide great potential for prototyping passive microfluidic devices for biosensor cartridge applications.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼