RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Nitrogen (N) use efficiency and yield in rice under varying types and rates of N source: chemical fertilizer, livestock manure compost and food waste-livestock manure compost

        Sung Jwakyung,Kim Woojin,Oh Taek-Keun,So Yoon-Sup 한국응용생명화학회 2023 Applied Biological Chemistry (Appl Biol Chem) Vol.66 No.-

        An optimal use of organic composts derived from animal and food wastes could provide an opportunity to achieve both sustainable crop production and soil quality, and a lot of research has provided the evidence. The nitrogen use efficiencies (NUEs) is a definition to evaluate the interaction between crop and nitrogen (N), and, due to this reason, widely used in agriculture. The current work tried to evaluate NUEs as an indicator of N acquisition capacity and physiological responses of rice grown under varying N levels. To do this, we employed different types and rates of nitrogen source, chemical fertilizer, livestock manure-based compost and food waste and livestock manure-containing compost. Despite of the enhanced rice growth and yield by fertilization, a difference by types and rates of fertilization was not observed. Net photosynthetic rate was significantly higher in the treatments of 90–317 N kg ha-1. The NUE (N uptake efficiency × N utilization efficiency) was the highest in lower N application groups, and sharply reduced with an increase in fertilization rates. In contrast, the nitrogen harvest index (NHI, grain N/total biomass N, kg kg-1) showed higher (0.71– 0.76 kg kg-1) in greater N application treatments (≤ 317 N kg ha-1). Accordingly, in terms of NUE, our result suggest that rice may be affordable of the application of less than 300 kg N ha-1 (combination with chemical fertilizer and organic compost). Nevertheless, it should be investigated how excess N application affects soil quality, and how long rice plant and soil can accept excess N without an environmental load.

      • KCI등재

        Temporal Changes in N Assimilation and Metabolite Composition of Nitrate-Affected Tomato Plants

        Jwakyung Sung,Suyeon Lee,Yejin Lee,Rogyoung Kim,Juyoung Lee,Jongsik Lee,Yongsik Ok 한국토양비료학회 2012 한국토양비료학회지 Vol.45 No.6

        The role of inorganic nitrogen assimilation in the production of amino acids, organic acids and soluble sugars is one of the most important biochemical processes in plants, and, in order to achieve normally, nitrate uptake and assimilation is essential. For this reason, the characterization of nitrate assimilation and metabolite composition from leaves, roots and xylem sap of tomato (Solanum lycopersicum) was investigated under different nitrate levels in media. Tomato plants were grown hydroponically in liquid culture under five different nitrate regimes: deficient (0.25 and 0.75 mM NO<sub>3</sub> -), normal (2.5 mM NO<sub>3</sub> -) and excessive (5.0 and 10.0 mM NO<sub>3</sub> -). All samples, leaves, roots and xylem sap, were collected after 7 and 14 days after treatment. The levels of amino acids, soluble sugars and organic acids were significantly decreased by N-deficiency whereas, interestingly, they remained higher in xylem sap as compared with N-normal and -surplus. The N-excessive condition did not exert any significant changes in metabolites composition, and thus their levels were similar with N-normal. The gene expression and enzyme activity of nitrate reductase (NR), nitrite reductase (NIR) and glutamine synthetase (GS) were greatly influenced by nitrate. The data presented here suggest that metabolites, as a signal messenger, existed in xylem sap seem to play a crucial role to acquire nitrate, and, in addition, an increase in α-ketoglutarate pathway-derived amino acids under N-deficiency may help to better understand plant C/N metabolism.

      • KCI등재

        Physiological Responses of Tomato Plants and Soil Microbial Activity in Salt Affected Greenhouse Soil

        Sung, Jwakyung,Lee, Suyeon,Nam, Hyunjung,Lee, Yejin,Lee, Jongsik,Almaroai, Yaser A.,Ok, Yongsik Korean Society of Soil Science and Fertilizer 2012 한국토양비료학회지 Vol.45 No.6

        Crop productivity decreases globally as a result of salinization. However, salinity impact on greenhouse-grown crops is much higher than on field-grown crops due to the overall concentrations of nutrients in greenhouse soils. Therefore, this study was performed to determine the short-term changes in growth, photosynthesis, and metabolites of tomato plants grown in greenhouse under heavily input of fertilizers evaluated by microbial activity and chemical properties of soils. The soils (< 3, 3.01~6, 6.01~10 and > 10.01 dS $m^{-1}$) from farmer's greenhouse fields having different fertilization practices were used. Results showed that the salt-accumulated soil affected adversely the growth of tomato plants. Tomato plants were seldom to complete their growth against > 10.0 dS $m^{-1}$ level of EC. The assimilation rate of $CO_2$ from the upper fully expanded leaves of tomato plants is reduced under increasing soil EC levels at 14 days, however; it was the highest in moderate or high EC-subjected (3.0 ~ 10.0 dS $m^{-1}$) at 28 days. In our experiment, soluble sugars and starch were sensitive markers for salt stress and thus might assume the status of crops against various salt conditions. Taken together, tomato plants found to have tolerance against moderate soil EC stress. Various EC levels (< 3.0 ~ 10.0 dS $m^{-1}$) led to a slight decrease in organic matter (OM) contents in soils at 28 days. Salinity stress led to higher microbial activity in soils, followed by a decomposition of OM in soils as indicated by the changes in soil chemical properties.

      • KCI등재

        Mineral Uptake and Soluble Carbohydrates of Tomato Plants as Affected by Air Temperatures and Mineral Treatment Levels

        Sung, Jwakyung,Yun, Hejin,Cho, Minji,Lee, Yejin,Chun, Hyenchung,Ha, Sangkeun,Sonn, Yeonkyu Korean Society of Soil Science and Fertilizer 2015 한국토양비료학회지 Vol.48 No.4

        Both low and high temperatures affect plant growth and development at whole plant level, tissue and even cell level through a variety of metabolic changes. Temperature stress is one of frequently occurring problems in greenhouse crops in summer and winter seasons due to the wide-spread year-round cultivation. In the present study, we investigated the extent of the inhibition of growth, macro-element uptake and soluble carbohydrate production, and the effect of extra-supply of minerals as a means of the recovery from temperature damage. Tomato plants were grown five different growth temperatures (15/8, 20/13, 28/21, 33/23 and $36/26^{\circ}C$), and extra-supply of minerals was composed of 1.5- and 2.0-fold stronger than the standard nutrition (1/2 strength of Hoagland's solution). Temperature stress significantly adversely affected tomato growth and mineral uptake, whereas soluble carbohydrate accumulation represented temperature-dependent response, more accumulation at low temperature and more consumption at high temperature. The soluble sugars in leaves and stems were mostly declined with the supply of extra-minerals at low and optimal temperatures, whereas remained unchanged at high temperature. The starch levels also remained unchanged or slightly decreased.

      • KCI등재

        Effect of high temperature on mineral uptake, Soluble carbohydrates partitioning and cucumber yield

        Jwakyung Sung,Suyeon Lee,Yejin Lee,Sangkeun Ha,Yeonkyu Sonn 충남대학교 농업과학연구소 2014 농업과학연구 Vol.41 No.4

        Plastic film houses are directly associated with increases in plant growth and yield of vegetable crops through a year round cultivation, however, at the same time temperature stresses are one of fates which are difficult to avoid during crop growth. The objective of this study was to examine the translocation and distribution of minerals (N, P, K) and carbohydrates as well as seasonal fluctuation of mineral uptake and carbohydrate production in cucumber plant grown under moderately high temperature. The temperature treatments consisted of 2-layers film houses (optimal temp.) and 3-layers (high temp.). Shoot growth of cucumber plants were linearly increased until 14 weeks after transplanting (WAT) without any significant difference between both temperatures, and the slowdown was observed from 16 WAT. The level of soluble sugar and starch was slightly greater in optimal temperature compared to the high. Cumulative accumulation of soluble sugar was significantly different before and after 12 WAT in both treatments, whereas starch level represented a constant increase. Monthly production of soluble sugar reached the peak between 12 to 16 WAT, and starch peaked between 4 to 8 WAT and 12 to 16 WAT. Total uptake of N, P and K in optimal and high temperature conditions was 18.4g plant-1 and 17.6 for N, 4.7 and 5.1 for P, and 37.7 and 36.2 for K, respectively, and the pattern of monthly N uptake between optimal and high temperatures was greater in early growth stage, whereas was greater in mid growth stage in both P and K. Thus, this study suggests that moderately high temperature influences much greater to photosynthesis and carbohydrate production than plant biomass and mineral uptake. On the basis of the present result, it is required to indentify analysis of respiration rates from plant and soil by constantly increasing temperature conditions and field studies where elevated temperatures are monitored and manipulated.

      • KCI등재

        Effect of Customized Fertilizer Application and Soil Properties on Amino Acids Composition in Rice Grain

        Jwakyung Sung,Yejin Lee,Hyenjung Chun,Sangkeun Ha,Yeonkyu Sonn,Jongsik Lee 한국토양비료학회 2015 한국토양비료학회지 Vol.48 No.5

        Our government has performed to support the nation-wide application of customized fertilizer based on soil-testing results and crop nutrient balance in order to promote the environment-friendly agriculture and to respond the global environment guide-line since 2010. This study was performed at the selected local paddy fields (Hwaseong-si, Uiseong-gun and Miryang-si) with different soil chemical properties in 2012. The contents of amino acids measured showed an increasing trend with fertilization, and glutamic acid was the most abundant amino acid followed by aspartic acid, leucine and alanine. However, valine, isoleusine, tyrosine and lysine were not significantly affected by fertilization. The significant differences in grain N, expressed as a crude protein, and amino acids dose was observed between experimental sites (p<0.001), treatments (p<0.01 to 0.001) and interaction of both factors (p<0.01 to 0.001). In our experiment the following order of carbon skeleton backbones to produce amino acids was observed irrespective of experiment sites and fertilization: α-ketoglutarate > oxalate > pyruvate > 3-phosphoglycerate > phosphoenolpyruvate. In conclusion, customized fertilizer had no difference in amino acids compared to the conventional-NPK practice which was higher than in no fertilization, and also the normal paddy represented slightly higher amino acids compared to the reclaimed. Further study based on the present results is required to investigate what is main factor to amino acids between genetic and environmental factors.

      • KCI등재

        Source-Sink Partitioning of Mineral Nutrients and Photo-assimilates in Tomato Plants Grown under Suboptimal Nutrition

        Jwakyung Sung,Suyeon Lee,Yejin Lee,Hongbae Yun,Sangkeun Ha,Yongsik Ok 한국토양비료학회 2013 한국토양비료학회지 Vol.46 No.6

        A huge number of greenhouse soils in Korea have accumulated mineral elements which induce many nutritional and pathological problems. The present study was performed to the effects of the reduced fertilization on plant growth, and uptake and partitioning of minerals (N, P, K) and soluble carbohydrates using highly minerals-accumulated farmer’s greenhouse soil. On the basis of the recommended application for tomato crop, the application rates of N, P and K were 110(50%)-5.2(5%)-41.5(35%)kg ha<SUP>-1</SUP>, respectively, using Hoagland’s nutrient solution. Tomato growth rates during the whole experiment were not significant between treatments, but it was found that a decrease in daily growth represented after 60 days of treatment (DAT). The reduced application led to a drastic decrease in the concentration of N, P and K in fruits, and, thus, this resulted in lower uptake after 40 DAT. The lower phloem export and utilization of soluble carbohydrates caused an accumulation of extra-carbohydrates in leaves, stems and fruits in the reduced application. The reduced fertilization induced the capture of N, P and K in leaves and of soluble carbohydrates in stems compared to the conventional application. In this study, we suggest that it is possible to delay the first fertigation time in minerals-accumulated soils without an adverse impact on crop growth, but it is necessary to regularly monitor mineral status in soil to ensure a balanced uptake, synthesis and partitioning of minerals and carbohydrates.

      • KCI등재

        Effect of Suboptimal Nutritional Status on Mineral Uptake and Carbohydrate Metabolism in Tomato Plants

        Jwakyung Sung,Sangmin Lee,Suyeon Lee,Rogyoung Kim,Yejin Lee,Hongbae Yun,Sangkeun Ha,Beomheon Song 한국토양비료학회 2013 한국토양비료학회지 Vol.46 No.5

        A suitable supply of mineral elements into shoot via a root system from growth media makes plants favorable growth and yield. The shortage or surplus of minerals directly affects overall physiological reactions to plants and, especially, strongly influences carbohydrate metabolism as a primary response. We have studied mineral uptake and synthesis and translocation of soluble carbohydrates in N, P or K-deficient tomato plants, and examined the interaction between soluble carbohydrates and mineral elements. Four-weeks-old tomato plants were grown in a hydroponic growth container adjusted with suboptimal N (0.5 mmol L<SUP>-1</SUP> Ca(NO₃)₂ㆍ4H₂O and 0.5 mmol L-1 KNO₃), P (0.05 mmol L<SUP>-1</SUP> KH₂PO₄), and K (0.5 mmol L<SUP>-1</SUP> KNO₃) for 30 days. The deficiency of specific mineral element led to a significant decrease in its concentration and affected the concentration of other elements with increasing treatment period. The appearance of the reduction, however, differed slightly between elements. The ratios of N uptake of each treatment to that in NPK sufficient tomato shoots were 4 (N deficient), 50 (P deficient), and 50% (K deficient). The P uptake ratios were 21 (N deficient), 19 (P deficient), and 28% (K deficient) and K uptake ratios were 11 (N deficient), 46 (P deficient), and 7% (K deficient). The deficiency of mineral elements also influenced on carbohydrate metabolism; soluble sugar and starch was substantially enhanced, especially in N or K deficiency. In conclusion, mineral deficiency leads to an adverse carbohydrate metabolism such as immoderate accumulation and restricted translocation as well as reduced mineral uptake and thus results in the reduced plant growth.

      • KCI등재

        Physiological Responses of Tomato Plants and Soil Microbial Activity in Salt Affected Greenhouse Soil

        Jwakyung Sung,Suyeon Lee,Hyunjung Nam,Yejin Lee,Jongsik Lee,Yaser. A. Almaroai,Yongsik Ok 한국토양비료학회 2012 한국토양비료학회지 Vol.45 No.6

        Crop productivity decreases globally as a result of salinization. However, salinity impact on greenhouse-grown crops is much higher than on field-grown crops due to the overall concentrations of nutrients in greenhouse soils. Therefore, this study was performed to determine the short-term changes in growth, photosynthesis, and metabolites of tomato plants grown in greenhouse under heavily input of fertilizers evaluated by microbial activity and chemical properties of soils. The soils (< 3, 3.01~6, 6.01~10 and >10.01 dS m<sup>-1</sup>) from farmer’s greenhouse fields having different fertilization practices were used. Results showed that the salt-accumulated soil affected adversely the growth of tomato plants. Tomato plants were seldom to complete their growth against > 10.0 d Sm<sup>-1</sup> level of EC. The assimilation rate of CO2 from the upper fully expanded leaves of tomato plants is reduced under increasing soil EC levels at 14 days, however; it was the highest in moderate or high EC-subjected (3.0 ~ 10.0 dS m<sup>-1</sup>) at 28 days. In our experiment, soluble sugars and starch were sensitive markers for salt stress and thus might assume the status of crops against various salt conditions. Taken together, tomato plants found to have tolerance against moderate soil EC stress. Various EC levels (<3.0 ~ 10.0 dS m<sup>-1</sup>) led to a slight decrease in organic matter (OM) contents in soils at 28 days. Salinity stress led to higher microbial activity in soils, followed by a decomposition of OM in soils as indicated by the changes in soil chemical properties.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼