RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Analysis on the Dynamic Responses of an Overlapped Circular Shield Tunnel under the Different Vibration Loads

        Qixiang Yan,Junchen Zhang,Wenyu Chen,Chaofan Yao,Wenbo Yang,Hang Chen,Xirui Liu 대한토목학회 2020 KSCE JOURNAL OF CIVIL ENGINEERING Vol.24 No.10

        At present, there are many studies on the dynamic response of overlapped tunnels, but most of them are through numerical simulation. Very few has been conducted by the experimental model research and frequency domain analysis. Combined with the model test and the numerical simulation, the dynamic response of the tunnel lining structure under the action of different train speeds and different tunnel clear distances are investigated, which can remedy the deficiencies in the relevant fields and verify the accuracy of numerical simulation results. The results show that as the train speed increases, the amplitude of the energy spectra of the vibration loads decrease significantly. The tunnel response at the sidewalls is smaller than that at the tunnel crown and at the invert in the lower tunnel. As the net distance increases, the amplitudes of the acceleration frequency spectrum and the energy spectra of the lower tunnel decrease, but with a diminishing rate. The dynamic coefficients of circumferential of the upper tunnel under a train load are larger than those in the longitudinal direction in the invert.

      • KCI등재

        Spindle Spinel CoFeCoO4 Microparticles/rGO as an Oxygen Reduction and Oxygen Evolution Catalyst

        Bowen Wang,Nian Tao,Junchen Liu,Hao Wang,Yinxiao Du,Hujiang Yang,Yonggang Wang,Kai Huang,Ru Zhang,Ming Lei 성균관대학교(자연과학캠퍼스) 성균나노과학기술원 2019 NANO Vol.14 No.4

        The representative spinel-type materials AB2O4 (both A and B are transition metals) electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) have been investigated and significant improvements have been achieved in the activity and durability for ORR and OER in the alkaline solution. But CoFeCoO4 was not explored widely like ZnCo2O4 (or NiCo2O4) as the ORR electrocatalyst for its relatively complicated atomic site occupation. CoFeCoO4 has a typical cubic spinel structure with Co2+ in the tetrahedron and Co3+ and Fe3+ in the octahedron. A mixture of Co3+ and Fe3+ in the B site makes the oxide have a wider overlap between transition metal 3d orbit and O 2p orbit, which can lead to an effective charge transfer in the rate-determining steps of ORR process and then enhance the ORR activity. The high electronic conductivity and specific surface area of rGO can accelerate charger transfer and provide more catalytic sites, which would contribute to a faster ORR process. In this work, the porous spindle CoFeCoO4 microparticles which were synthesized by hydrothermal technology, were assembled on the rGO surface to obtain the CoFeCoO4/rGO composite, which exhibited enhanced ORR activity and catalytic stability comparable to that of Pt/C. On the other hand, the OER catalytic activity of the prepared samples was also studied to explore the potential of CoFeCoO4/rGO as a bifunctional oxygen catalyst.

      • KCI등재

        Cardiac-targeted delivery of nuclear receptor RORα via ultrasound targeted microbubble destruction optimizes the benefits of regular dose of melatonin on sepsis-induced cardiomyopathy

        Shanjie Wang,Kegong Chen,Ye Wang,Zeng Wang,Zhaoying Li,JunChen Guo,Jianfeng Chen,Wenhua Liu,Xiaohui Guo,Guangcan Yan,Chenchen Liang,Huai Yu,Shaohong Fang,Bo Yu 한국생체재료학회 2023 생체재료학회지 Vol.27 No.00

        Background Large-dose melatonin treatment in animal experiments was hardly translated into humans, which may explain the dilemma that the protective effects against myocardial injury in animal have been challenged by clinical trials. Ultrasound-targeted microbubble destruction (UTMD) has been considered a promising drug and gene delivery system to the target tissue. We aim to investigate whether cardiac gene delivery of melatonin receptor mediated by UTMD technology optimizes the efficacy of clinically equivalent dose of melatonin in sepsis-induced cardiomyopathy. Methods Melatonin and cardiac melatonin receptors in patients and rat models with lipopolysaccharide (LPS)- or cecal ligation and puncture (CLP)-induced sepsis were assessed. Rats received UTMD-mediated cardiac delivery of RORα/cationic microbubbles (CMBs) at 1, 3 and 5 days before CLP surgery. Echocardiography, histopathology and oxylipin metabolomics were assessed at 16–20 h after inducing fatal sepsis. Results We observed that patients with sepsis have lower serum melatonin than healthy controls, which was observed in the blood and hearts of Sprague–Dawley rat models with LPS- or CLP-induced sepsis. Notably, a mild dose (2.5 mg/kg) of intravenous melatonin did not substantially improve septic cardiomyopathy. We found decreased nuclear receptors RORα, not melatonin receptors MT1/2, under lethal sepsis that may weaken the potential benefits of a mild dose of melatonin treatment. In vivo, repeated UTMD-mediated cardiac delivery of RORα/CMBs exhibited favorable biosafety, efficiency and specificity, significantly strengthening the effects of a safe dose of melatonin on heart dysfunction and myocardial injury in septic rats. The cardiac delivery of RORα by UTMD technology and melatonin treatment improved mitochondrial dysfunction and oxylipin profiles, although there was no significant influence on systemic inflammation. Conclusions These findings provide new insights to explain the suboptimal effect of melatonin use in clinic and potential solutions to overcome the challenges. UTMD technology may be a promisingly interdisciplinary pattern against sepsis-induced cardiomyopathy.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼