RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Experimental and numerical studies of stress/strain characteristics in riveted aircraft lap joints

        Chao Zeng,Wei Tian,Xiang Yao Liu,Jiu Tian Xue 대한기계학회 2019 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.33 No.7

        The fatigue property of riveted lap joint is greatly related to the riveting-induced residual stress, especially the stress distribution on the faying surface. However, an accurate study of the residual stress characteristics in the riveted sheet could be very difficult. In this paper, both numerical and experimental investigations were carried out on the stress/strain characteristics in riveted aircraft lap joints. A special specimen was designed for the test of strain variations on the faying surface of the sheet by microstrain gages. For the numerical simulation, the rivet squeezing process was analyzed using the explicit dynamic finite element (FE) method, whilst a general static FE analysis was employed for the elastic springback after the squeeze force was removed. A comparison of the strain variations between the experimental results and FE simulations shows a general good agreement, although there may be some difference for points measured near the hole surface. The FE analysis reveals that both compressive and tensile residual stresses could be introduced in the riveted sheet. Massive compressive residual stress can be created in the near-surface layer of the hole. However, the stress level is not always increased with increasing the squeeze force, and so is the improvement of fatigue life observed. Further study is still necessary to account for the fatigue life decreasing effect caused by a high squeeze force.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼