RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Model and Optimize the Magnetic Composite Fluid (MCF) Polishing Process with Machine Learning Modeling and Intelligent Optimization Algorithm

        Jinwei Fan,Xingfei Ren,Ri Pan,Peitong Wang,Haohao Tao 한국정밀공학회 2022 International Journal of Precision Engineering and Vol.23 No.9

        In the magnetic composite fluid (MCF) polishing process, appropriate polishing parameters are the basis of achieving high-quality polishing without damage. Appropriate polishing parameters are mainly based on an accurate polishing model and an excellent polishing parameters optimization algorithm. However, due to the complicated principle of MCF polishing and various influencing elements, traditional modeling methods have the limitations of low accuracy, poor application, and difficulty in correcting. Therefore, it is challenging to obtain the optimal polishing quality by optimizing the polishing parameters based on the traditional model. This study proposed an online modeling approach considering data cleaning based on machine learning modeling, and the particle swarm optimization (PSO) algorithm was used to optimize polishing parameters. Then, copper polishing experiments were carried out to validate the modeling and optimization methods. The results demonstrate that the proposed machine learning online modeling method can establish an accurate MCF polishing model, and the nano-scale fine polishing of copper can be achieved by the optimized polishing parameters of PSO, and the surface roughness of the copper sample was reduced by 85% to 0.031 μm.

      • KCI등재

        A novel 5-DOFs dynamic model of aerostatic spindle considering the effect of process damping in ultra-precision machining

        Dongju Chen,Shupei Li,Jinwei Fan 대한기계학회 2022 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.36 No.9

        The existing aerostatic spindle dynamic model only analyses the effects of mass imbalance and external load, ignoring the influence of cutting system on the spindle dynamic characteristics under cutting conditions. In this paper, a 5-DOFs aerostatic spindle dynamic model is established considering the influence of the micro-scale non-linear dynamic performance of the aerostatic spindle and cutting process damping. First, an analytical identification model of process damping with blunt circular cutter is established. Then, the micro-scale dynamic characteristics of the aerostatic spindle are analyzed and a 5-DOFs aerostatic spindle dynamic model is established considering the influence of process damping. Finally, the model is simulated and the influence of process damping on the dynamic characteristics of aerostatic spindle is analyzed. The simulation results show that the process damping of the cutting system has a significant influence on the dynamic characteristics of the aerostatic spindle. This study can provide theoretical guidance for coupling research of cutting system and spindle system.

      • KCI등재

        Modification of tool influence function for bonnet polishing tool based on analysis of interfacial contact state

        Ri Pan,Xiangxiang Zhu,Zhenzhong Wang,Dongju Chen,Shuting Ji,Jinwei Fan,Rui Wang 대한기계학회 2022 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.36 No.6

        The polishing mechanism of bonnet polishing (BP) and the tool influence function (TIF) of bonnet tool have been widely studied. However, most of current studies pay little attention to the influence of polishing slurry on the BP mechanism as well as TIF. This study proposes that the interfacial contact state between the polishing tool and the workpiece is in a mixed lubrication state, subsequently the BP mechanism is further explored. It is found that the workpiece material is removed by polishing pad and abrasives. The polishing slurry is not directly involved in workpiece removal, but shares the normal pressure of the polishing tool on workpiece, which affects material removal. Based on the above mechanism, the TIF removal prediction model is established and verified by experiments. The results show that the maximum error of the model prediction value is quiet small, which verifies the model. Moreover, compared with Preston model and the previous model, which ignored the influence of the fluid, the average prediction error of the model in this paper when D 0 = 20 mm is 6.38 %, while the previous model and Preston model are 11.21 % and 49.10 %, respectively. Which illustrates the model in this paper has higher accuracy.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼