RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Cerebral Venous Reflux and Dilated Basal Ganglia Perivascular Space in Hypertensive Intracerebral Hemorrhage

        Hsin-Hsi Tsai,Bo-Ching Lee,Ya-Fang Chen,Jiann-Shing Jeng,Li-Kai Tsai 대한뇌졸중학회 2022 Journal of stroke Vol.24 No.3

        Background and Purpose Cerebral venous flow alterations potentially contribute to age-related white matter changes, but their role in small vessel disease has not been investigated. Methods This study included 297 patients with hypertensive intracerebral hemorrhages (ICH) who underwent magnetic resonance imaging. Cerebral venous reflux (CVR) was defined as the presence of abnormal signal intensity in the dural venous sinuses or internal jugular vein on time-of-flight angiography. We investigated the association between CVR, dilated perivascular spaces (PVS), and recurrent stroke risk. Results CVR was observed in 38 (12.8%) patients. Compared to patients without CVR those with CVR were more likely to have high grade (>20 in the number) dilated PVS in the basal ganglia (60.5% vs. 35.1%; adjusted odds ratio [aOR], 2.64; 95% confidence interval [CI], 1.25 to 5.60; P=0.011) and large PVS (>3 mm in diameter) (50.0% vs. 18.5%; aOR, 3.87; 95% CI, 1.85 to 8.09; P<0.001). During a median follow-up of 18 months, patients with CVR had a higher recurrent stroke rate (13.6%/year vs. 6.2%/year; aOR, 2.53; 95% CI, 1.09 to 5.84; P=0.03) than those without CVR. Conclusions CVR may contribute to the formation of enlarged PVS and increase the risk of recurrent stroke in patients with hypertensive ICH.

      • KCI등재

        Simplified Design Equation of Minimum Interior Joint Depth for Special Moment Frames with High-Strength Reinforcement

        Hung-Jen Lee,Hsi-Ching Chen,Tsung-Chieh Tsai 한국콘크리트학회 2018 International Journal of Concrete Structures and M Vol.12 No.7

        To avoid excessive slip of beam longitudinal bars at the joints of an earthquake-resisting moment frame, ACI 318 Building Code set a minimum joint depth of 20 times the diameter of the largest longitudinal beam bars passing through the joint, which is based on prior experimental verification of beam-column joints with Grade 420 ㎫ reinforcement. In view of that the 20-bar-diameter criterion cannot be simply extended for concrete frame joints with higher grade reinforcement, this paper summarizes international existing design criteria and proposes a simplified equation for the minimum joint depth. The equation applicability is assessed by evaluating the cyclic testing results of beam-column joints conducted in East Asian and Pacific Countries, where Grade 490, 590, and 690 ㎫ reinforcement have been used for earthquake-resistant concrete structures. Beam-column joints that satisfy the proposed equation can demonstrate satisfactory hysteresis behavior at an interstory drift of 4%.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼