RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Gene microarray analysis revealed a potential crucial gene RACK1 in oral squamous cell carcinoma (OSCC)

        Jian-Wei Zheng,Yinshen Yang,Shujuan Yang,Wei Zhou,Hongtian Qiu,Xiaoping Li,Qiuyun Cai,Ting Li,Gang Luo 한국통합생물학회 2018 Animal cells and systems Vol.22 No.2

        Oral squamous cell carcinoma (OSCC) is the sixth most common cancer worldwide, which appears as a consequence of multiple molecular genetic events in various chromosomes and genes. In order to unveil the possible mechanisms underlying OSCC tumorigenesis, the OSCC-related gene expression variance and the gene interaction network should be further investigated. Herein, we conducted the NimbleGen Human Gene Expression Microarray to analyze expression heterogeneity between OSCC primary tumor tissue and its adjacent normal tissue from two patients. A total number of 7872 out of 32,448 detected genes are differentially expressed in OSCC. Gene ontology (GO) analysis demonstrated that these differentially expressed transcripts were critical in a series of metabolic processes, cancer-related signal pathways, and biological regulations. KEGG signaling pathway enrichment suggested a number of pathways (metabolic process and immune response) which are frequently enrolled during cancer progression. 15 most differential regulated genes between OSCC tumor and non-tumor were confirmed by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Furthermore, the interaction network analysis of these confirmed genes by STRING database showed the two subunits of RACK1 had direct interaction with 14 differential proteins. This bioinformatics research lends support about the critical role of RACK1 which functions as a key node protein driving OSCC development.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼