RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUS

        Exact solution for transverse bending analysis of embedded laminated Mindlin plate

        Heydari, Mohammad Mehdi,Kolahchi, Reza,Heydari, Morteza,Abbasi, Ali Techno-Press 2014 Structural Engineering and Mechanics, An Int'l Jou Vol.49 No.5

        Laminated Rectangular plates embedded in elastic foundations are used in many mechanical structures. This study presents an analytical approach for transverse bending analysis of an embedded symmetric laminated rectangular plate using Mindlin plate theory. The surrounding elastic medium is simulated using Pasternak foundation. Adopting the Mindlin plate theory, the governing equations are derived based on strain-displacement relation, energy method and Hamilton's principle. The exact analysis is performed for this case when all four ends are simply supported. The effects of the plate length, elastic medium and applied force on the plate transverse bending are shown. Results indicate that the maximum deflection of the laminated plate decreases when considering an elastic medium. In addition, the deflection of the laminated plate increases with increasing the plate width and length.

      • KCI등재

        Lift characteristics of pitching NACA0015 airfoil due to unsteady forced surface inflation

        Ali Heydari,Mahmoud Pasandideh-Fard 대한기계학회 2015 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.29 No.6

        The purpose of this work is to investigate the unsteady forced surface inflating (UFSI) effect on lift coefficient of a pitching airfoil. Thus, 2D unsteady compressible flow around a pitching airfoil is analyzed by means of coarse grid CFD (CGCFD) method and springdynamic grids network. At first to validate the code for moving boundary cases, the predicted lift coefficient of pitching airfoil is comparedwith experiments. Simultaneously, the CGCFD results are compared with the RANS simulation. Then UFSI is added to the pitchingairfoil. The effects of unsteady parameters such as the inflation amplitude and phase difference between pitching and inflation is investigatedon lift and pressure coefficients of pitching airfoil. According to the results, UFSI, with zero degree phase difference betweenpitching and inflation, help to postpone the dynamic stall.

      • KCI등재

        Exact solution for transverse bending analysis of embedded laminated Mindlin plate

        Mohammad Mehdi Heydari,Reza Kolahchi,Morteza Heydari,Ali Abbasi 국제구조공학회 2014 Structural Engineering and Mechanics, An Int'l Jou Vol.49 No.5

        Laminated Rectangular plates embedded in elastic foundations are used in many mechanical structures. This study presents an analytical approach for transverse bending analysis of an embedded symmetric laminated rectangular plate using Mindlin plate theory. The surrounding elastic medium is simulated using Pasternak foundation. Adopting the Mindlin plate theory, the governing equations are derived based on strain-displacement relation, energy method and Hamilton’s principle. The exact analysis is performed for this case when all four ends are simply supported. The effects of the plate length, elastic medium and applied force on the plate transverse bending are shown. Results indicate that the maximum deflection of the laminated plate decreases when considering an elastic medium. In addition, the deflectionof the laminated plate increases with increasing the plate width and length.

      • KCI등재

        Evaluation of the parameters affecting the Schmidt rebound hammer reading using ANFIS method

        Ali Toghroli,Ehsan Darvishmoghaddam,Yousef Zandi,Mahdi Parvan,Maryam Safa,Mu’azu Mohammed Abdullahi,Abbas Heydari,Karzan Wakil,Saad A.M. Gebreel,Majid Khorami 사단법인 한국계산역학회 2018 Computers and Concrete, An International Journal Vol.21 No.5

        As a nondestructive testing method, the Schmidt rebound hammer is widely used for structural health monitoring. During application, a Schmidt hammer hits the surface of a concrete mass. According to the principle of rebound, concrete strength depends on the hardness of the concrete energy surface. Study aims to identify the main variables affecting the results of Schmidt rebound hammer reading and consequently the results of structural health monitoring of concrete structures using adaptive neuro-fuzzy inference system (ANFIS). The ANFIS process for variable selection was applied for this purpose. This procedure comprises some methods that determine a subsection of the entire set of detailed factors, which present analytical capability. ANFIS was applied to complete a flexible search. Afterward, this method was applied to conclude how the five main factors (namely, age, silica fume, fine aggregate, coarse aggregate, and water) used in designing concrete mixture influence the Schmidt rebound hammer reading and consequently the structural health monitoring accuracy. Results show that water is considered the most significant parameter of the Schmidt rebound hammer reading. The details of this study are discussed thoroughly.

      • SCOPUSKCI등재

        Human embryos derived from first polar body nuclear transfer exhibit comparatively abnormal morphokinetics during development

        Leila Heydari,Mohammad Ali Khalili,Azam Agha Rahimi,Fatemeh Shakeri The Korean Society for Reproductive Medicine 2023 Clinical and Experimental Reproductive Medicine Vol.50 No.3

        Objective: Reconstructed oocytes after polar body genome transfer constitute a potential therapeutic option for patients with a history of embryo fragmentation and advanced maternal age. However, the rescue of genetic material from the first polar body (PB1) through introduction into the donor cytoplasm is not yet ready for clinical application. Methods: Eighty-five oocytes were obtained following in vitro maturation (IVM) and divided into two groups: PB1 nuclear transfer (PB1NT; n=54) and control (n=31). Following enucleation and PB1 genomic transfer, PB1 fusion was assessed. Subsequently, all fused oocytes underwent intracytoplasmic sperm injection (ICSI) and were cultured in an incubator under a time-lapse monitoring system to evaluate fertilization, embryonic morphokinetic parameters, and cleavage patterns. Results: Following enucleation and fusion, 77.14% of oocytes survived, and 92.59% of polar bodies (PBs) fused. However, the normal fertilization rate was lower in the PB1NT group than in the control group (56.41% vs. 92%, p=0.002). No significant differences were observed in embryo kinetics between the groups, but a significant difference was detected in embryo developmental arrest after the four-cell stage, along with abnormal cleavage division in the PB1NT group. This was followed by significant between-group differences in the implantation potential rate and euploidy status. Most embryos in the PB1NT group had at least one abnormal cleavage division (93.3%, p=0.001). Conclusion: Fresh PB1NT oocytes successfully produced normal zygotes following PB fusion and ICSI in IVM oocytes. However, this was accompanied by low efficiency in developing into cleavage embryos, along with an increase in abnormal cleavage patterns.

      • KCI등재

        Performance Evaluation a Combined Transition System in Slab-Ballasted Railway Track Using a Vehicle-Track-Substructure Interaction Model

        Hamidreza Heydari-Noghabi,José Nuno Varandas,Jabbar Ali Zakeri,Morteza Esmaeili 대한토목학회 2023 KSCE Journal of Civil Engineering Vol.27 No.9

        Abrupt stiffness variations along the railway track may increase the geometrical and mechanical defects of railway lines. The conjunction points of a railway track with concrete and ballast pavements, which are called slab-ballasted track transitions, are one of the main areas where vertical track stiffness changes sharply. Therefore, the potential benefits of a combined transition system along the slab-ballasted transition, made of an approach slab and additional rails, are studied in this paper. For this purpose, a vehicle-track-substructure interaction model, which included three main segments of the railway track (slab track, transition zone, and ballasted track) was programmed based on the finite element method. A test line with the mentioned combined transition system was built to measure the railway track responses through field study. Then, the three-dimensional (3D) numerical model was validated using the results obtained from the experimental tests. Afterwards, a number of parametric studies were performed to analyze the dynamic responses of the combined transition zone. The results indicated that this type of transition system promotes a smoother stiffness transition between the slab track segment and the ballasted track segment by making the transition in three gradual steps. The track displacements in the analyzed case-study gradually increased by about 22%, 28%, and 34% along the combined transition zone in the junction points of the slab and ballasted tracks.

      • SCIESCOPUS

        An analytical technique for estimation of seismic displacements in reinforced slopes based on horizontal slices method (HSM)

        Ghanbari, Ali,Khalilpasha, Abbas,Sabermahani, Mohsen,Heydari, Babak Techno-Press 2013 Geomechanics & engineering Vol.5 No.2

        Calculation of seismic displacements in reinforced slopes plays a crucial role in appropriate design of these structures however current analytical methods result indifferent values for permanent displacements of the slope. In this paper, based on limit equilibrium and using the horizontal slices method, a new formulation has been proposed for estimating the seismic displacements of a reinforced slope under earthquake records. In this method, failure wedge is divided into a number of horizontal slices. Assuming linear variations for tensile forces of reinforcements along the height of the slope, the coefficient of yield acceleration has been estimated. The simplicity of calculations and taking into account the frequency content of input triggers are among the advantages of the present formulation. Comparison of the results shows that the yield acceleration calculated by the suggested method is very close to the values resulted from other techniques. On the other hand, while there is a significant difference between permanent displacements, the values obtained from the suggested method place somehow between those calculated by the other techniques.

      • KCI등재

        Two new relationships for slip velocity and characteristic velocity in a non-center rotating column

        Torkaman Rezvan,Heydari Mehran,Cheshmeh Javad Najafi,Heydari Ali,Asadollahzadeh Mehdi 한국원자력학회 2022 Nuclear Engineering and Technology Vol.54 No.8

        In this investigation work, liquid-liquid extraction (L.L.E) through three distinctive frameworks have been examined for assurance of slip velocity (S.V), and characteristic velocity (C.V) in a non-center rotating column (N.C.R.C) with a wide extend of factors. Three double frameworks with distinctive interfacial tension comprising of toluene-water (high interfacial tension), n-butyl acetateewater (medium interfacial tension), and n-butanolewater (low interfacial tension) were investigated for tests. Two common relationships for the expectation of S.V and C.V, including phase stream rates, rotor speed, column geometry additionally physical properties, are displayed. The recommended relationships were compared with test information gotten from the writing and the display examination. Findings of this study, the present proposed correlations are more accurate than those previously reported.

      • KCI등재

        Size-dependent bending analysis of FGM nano-sinusoidal plates resting on orthotropic elastic medium

        Reza Kolahchi,Ali Mohammad Moniri Bidgoli,Mohammad Mehdi Heydari 국제구조공학회 2015 Structural Engineering and Mechanics, An Int'l Jou Vol.55 No.5

        Bending analysis of functionally graded (FG) nano-plates is investigated in the present work based on a new sinusoidal shear deformation theory. The theory accounts for sinusoidal distribution of transverse shear stress, and satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate without using shear correction factor. The material properties of nano-plate are assumed to vary according to power law distribution of the volume fraction of the constituents. The size effects are considered based on Eringen's nonlocal theory. Governing equations are derived using energy method and Hamilton’s principle. The closed-form solutions of simply supported nano-plates are obtained and the results are compared with those of first-order shear deformation theory and higher-order shear deformation theory. The effects of different parameters such as nano-plate length and thickness, elastic foundation, orientation of foundation orthtotropy direction and nonlocal parameters are shown in dimensionless displacement of system. It can be found that with increasing nonlocal parameter, the dimensionless displacement of nanoplate increases.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼