RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUS

        Effective technique to analyze transmission line conductors under high intensity winds

        Aboshosha, Haitham,El Damatty, Ashraf Techno-Press 2014 Wind and Structures, An International Journal (WAS Vol.18 No.3

        An effective numerical technique to calculate the reactions of a multi-spanned transmission line conductor system, under arbitrary loads varying along the spans, is developed. Such variable loads are generated by High Intensity Wind (HIW) events in the form of tornadoes and downburst. First, a semi-closed form solution is derived to obtain the displacements and the reactions at the ends of each conductor span. The solution accounts for the nonlinearity of the system and the flexibility of the insulators. Second, a numerical scheme to solve the derived closed-form solution is proposed. Two conductor systems are analyzed under loads resulting from HIW events for validation of the proposed technique. Non-linear Finite Element Analyses (FEA) are also conducted for the same two systems. The responses resulting from the technique are shown to be in a very good agreement with those resulting from the FEA, which confirms the technique accuracy. Meanwhile, the semi-closed form technique shows superior efficiency in terms of the required computational time. The saving in computational time has a great advantage in predicting the response of the conductors under HIW events, since this requires a large number of analyses to cover different potential locations and sizes of those localized events.

      • KCI등재

        Towards performance-based design under thunderstorm winds: a new method for wind speed evaluation using historical records and Monte Carlo simulations

        Haitham Aboshosha,Thomas G. Mara,Nicole Izukawa 한국풍공학회 2020 Wind and Structures, An International Journal (WAS Vol.31 No.2

        Accurate load evaluation is essential in any performance-based design. Design wind speeds and associated wind loads are well defined for synoptic boundary layer winds but not for thunderstorms. The method presented in the current study represents a new approach to obtain design wind speeds associated with thunderstorms and their gust fronts using historical data and Monte Carlo simulations. The method consists of the following steps (i) developing a numerical model for thunderstorm downdrafts (i.e. downbursts) to account for storm translation and outflow dissipation, (ii) utilizing the model to characterize previous events and (iii) extrapolating the limited wind speed data to cover life-span of structures. The numerical model relies on a previously generated CFD wind field, which is validated using six documented thunderstorm events. The model suggests that 10 parameters are required to describe the characteristics of an event. The model is then utilized to analyze wind records obtained at Lubbock Preston Smith International Airport (KLBB) meteorological station to identify the thunderstorm parameters for this location, obtain their probability distributions, and utilized in the Monte Carlo simulation of thunderstorm gust front events for many thousands of years for the purpose of estimating design wind speeds. The analysis suggests a potential underestimation of design wind speeds when neglecting thunderstorm gust fronts, which is common practice in analyzing historical wind records. When compared to the design wind speed for a 700-year MRI in ASCE 7-10 and ASCE 7-16, the estimated wind speeds from the simulation were 10% and 11.5% higher, respectively.

      • KCI등재

        Dynamic response of transmission line conductors under downburst and synoptic winds

        Haitham Aboshosha,Ashraf El Damatty 한국풍공학회 2015 Wind and Structures, An International Journal (WAS Vol.21 No.2

        In the current study, dynamic and quasi-static analyses were performed to investigate the response of multiple-spanned and single-spanned transmission line conductors under both downburst and synoptic winds considering different wind velocities and different length spans. Two critical downburst configurations, recommended in the literature and expected to cause maximum conductor reactions, were considered in the analyses. The objective of the study was to assess the importance of including the dynamic effect when predicting the conductor's reactions on the towers. This was achieved by calculating the mean, the background and the resonant reaction components, and evaluating the contribution of the resonant component to the peak reaction. The results show that the maximum contribution of the resonant component is generally low (in the order of 6%) for the multiple-spanned system at different wind velocities for both downburst and synoptic winds. For the single-spanned system, the result show a relatively high maximum contribution (in the order of 16%) at low wind velocity and a low maximum contribution (in the order of 6%) at high wind velocity for both downburst and synoptic winds. Such contributions may justify the usage of the quasi-static approach for analyzing transmission line conductors subjected to the high wind velocities typically used for the line design.

      • KCI등재

        Effective technique to analyze transmission line conductors under high intensity winds

        Haitham Aboshosha,Ashraf El Damatty 한국풍공학회 2014 한국풍공학회지 Vol.18 No.3

        An effective numerical technique to calculate the reactions of a multi-spanned transmission line conductor system, under arbitrary loads varying along the spans, is developed. Such variable loads are generated by High Intensity Wind (HIW) events in the form of tornadoes and downburst. First, a semi-closed form solution is derived to obtain the displacements and the reactions at the ends of each conductor span. The solution accounts for the nonlinearity of the system and the flexibility of the insulators. Second, a numerical scheme to solve the derived closed-form solution is proposed. Two conductor systems are analyzed under loads resulting from HIW events for validation of the proposed technique. Non-linear Finite Element Analyses (FEA) are also conducted for the same two systems. The responses resulting from the technique are shown to be in a very good agreement with those resulting from the FEA, which confirms the technique accuracy. Meanwhile, the semi-closed form technique shows superior efficiency in terms of the required computational time. The saving in computational time has a great advantage in predicting the response of the conductors under HIW events, since this requires a large number of analyses to cover different potential locations and sizes of those localized events.

      • SCIESCOPUS

        Dynamic response of transmission line conductors under downburst and synoptic winds

        Aboshosha, Haitham,El Damatty, Ashraf Techno-Press 2015 Wind and Structures, An International Journal (WAS Vol.21 No.2

        In the current study, dynamic and quasi-static analyses were performed to investigate the response of multiple-spanned and single-spanned transmission line conductors under both downburst and synoptic winds considering different wind velocities and different length spans. Two critical downburst configurations, recommended in the literature and expected to cause maximum conductor reactions, were considered in the analyses. The objective of the study was to assess the importance of including the dynamic effect when predicting the conductor's reactions on the towers. This was achieved by calculating the mean, the background and the resonant reaction components, and evaluating the contribution of the resonant component to the peak reaction. The results show that the maximum contribution of the resonant component is generally low (in the order of 6%) for the multiple-spanned system at different wind velocities for both downburst and synoptic winds. For the single-spanned system, the result show a relatively high maximum contribution (in the order of 16%) at low wind velocity and a low maximum contribution (in the order of 6%) at high wind velocity for both downburst and synoptic winds. Such contributions may justify the usage of the quasi-static approach for analyzing transmission line conductors subjected to the high wind velocities typically used for the line design.

      • KCI등재

        Numerical characterization of downburst wind field at WindEEE dome

        Ibrahim Ibrahim,Haitham Aboshosha,Haitham Aboshosha 한국풍공학회 2020 Wind and Structures, An International Journal (WAS Vol.30 No.3

        Downbursts are acknowledged for being a major loading hazard for horizontally-extending structures like transmission line systems. With these structures being inherently flexible, it is important to characterize the turbulence associated with the wind flow of downburst events being essential to quantify dynamic excitations on structures. Accordingly, the current study numerically characterizes the downburst wind field of open terrain simulated at the Wind Engineering, Energy and Environment (WindEEE) dome testing facility at The University of Western Ontario in Canada through a high-resolution large eddy simulation (LES). The study validates the numerical simulation considering both the mean and the turbulent components of the flow. It then provides a detailed visual description of the flow at WindEEE through the capabilities enabled by LES to identify the key factors affecting the flow. The study also presents the spatial distribution of turbulence intensities and length scales computed from the numerical model and compares them with previous values reported in the literature. The comparison shows the ability of the downburst simulated at WindEEE to reproduce turbulence characteristics similar to those reported from field measurements. The study also indicates that downburst turbulence is well-correlated circumferentially which imposes high correlated loads on horizontally-distributed structures such as transmission lines.

      • KCI등재

        Aero-elastic response of transmission line system subjected to downburst wind: Validation of numerical model using experimental data

        Amal Elawady,Haitham Aboshosha,Ashraf El Damatty 한국풍공학회 2018 Wind and Structures, An International Journal (WAS Vol.27 No.2

        At the University of Western Ontario (UWO), numerical tools represented in semi-closed form solution for the conductors and finite element modeling of the lattice tower were developed and utilized significantly to assess the behavior of transmission lines under downburst wind fields. Although these tools were validated against other finite element analyses, it is essential to validate the findings of those tools using experimental data. This paper reports the first aeroelastic test for a multi-span transmission line under simulated downburst. The test has been conducted at the three-dimensional wind testing facility, the WindEEE dome, located at the UWO. The experiment considers various downburst locations with respect to the transmission line system. Responses obtained from the experiment are analyzed in the current study to identify the critical downburst locations causing maximum internal forces in the structure (i.e., potential failure modes), which are compared with the failure modes obtained from the numerical tools. In addition, a quantitative comparison between the measured critical responses obtained from the experiment with critical responses obtained from the numerical tools is also conducted. The study shows a very good agreement between the critical configurations of the downburst obtained from the experiment compared to those predicted previously by different numerical studies. In addition, the structural responses obtained from the experiment and those obtained from the numerical tools are in a good agreement where a maximum difference of 16% is found for the mean responses and 25% for the peak responses.

      • SCIESCOPUS

        Aero-elastic response of transmission line system subjected to downburst wind: Validation of numerical model using experimental data

        Elawady, Amal,Aboshosha, Haitham,El Damatty, Ashraf Techno-Press 2018 Wind and Structures, An International Journal (WAS Vol.27 No.2

        At the University of Western Ontario (UWO), numerical tools represented in semi-closed form solution for the conductors and finite element modeling of the lattice tower were developed and utilized significantly to assess the behavior of transmission lines under downburst wind fields. Although these tools were validated against other finite element analyses, it is essential to validate the findings of those tools using experimental data. This paper reports the first aeroelastic test for a multi-span transmission line under simulated downburst. The test has been conducted at the three-dimensional wind testing facility, the WindEEE dome, located at the UWO. The experiment considers various downburst locations with respect to the transmission line system. Responses obtained from the experiment are analyzed in the current study to identify the critical downburst locations causing maximum internal forces in the structure (i.e., potential failure modes), which are compared with the failure modes obtained from the numerical tools. In addition, a quantitative comparison between the measured critical responses obtained from the experiment with critical responses obtained from the numerical tools is also conducted. The study shows a very good agreement between the critical configurations of the downburst obtained from the experiment compared to those predicted previously by different numerical studies. In addition, the structural responses obtained from the experiment and those obtained from the numerical tools are in a good agreement where a maximum difference of 16% is found for the mean responses and 25% for the peak responses.

      • A low-cost expandable multi-channel pressure system for wind tunnels

        Moustafa Aboutabikh,Ahmed Elshaer,Haitham Aboshosha 한국풍공학회 2022 Wind and Structures, An International Journal (WAS Vol.35 No.5

        Over the past few decades, the use of wind tunnels has been increasing as a result of the rapid growth of cities and the urge to build taller and non-typical structures. While the accuracy of a wind tunnel study on a tall building requires several aspects, the precise extraction of wind pressure plays a significant role in a successful pressure test. In this research study, a lowcost expandable synchronous multi-pressure sensing system (SMPSS) was developed and validated at Ryerson University’s wind tunnel (RU-WT) using electronically scanning pressure sensors for wind tunnel tests. The pressure system consists of an expandable 128 pressure sensors connected to a compact data acquisition and a host workstation. The developed system was examined and validated to be used for tall buildings by comparing mean, root mean square (RMS), and power spectral density (PSD) for the base moments coefficients with the available data from the literature. In addition, the system was examined for evaluating the mean and RMS pressure distribution on a standard low-rise building and were found to be in good agreement with the validation data.

      • KCI등재

        Flow-conditioning of a subsonic wind tunnel to model boundary layer flows

        Tarek Ghazal,Jiaxiang Chen,Moustafa Aboutabikh,Haitham Aboshosha,Sameh Elgamal 한국풍공학회 2020 Wind and Structures, An International Journal (WAS Vol.30 No.4

        This study aims at modeling boundary layers (BLs) encountered in sparse and built environments (i.e. open, suburban and urban) at the subsonic Wind Tunnel (WT) at Ryerson University (RU). This WT has an insignificant turbulence intensity and requires a flow-conditioning system consisting of turbulence generating elements (i.e., spires, roughness blocks, barriers) to achieve proper turbulent characteristics. This system was developed and validated in the current study in three phases. In phase I, several Computational Fluid Dynamic (CFD) simulations of the tunnel with generating elements were conducted to understand the effect of each element on the flow. This led to a preliminary design of the system, in which horizontal barriers (slats) are added to the spires to introduce turbulence at higher levels of the tunnel. This design was revisited in phase II, to specify slat dimensions leading to target BLs encountered by tall buildings. It was found that rougher BLs require deeper slats and, therefore, two-layer slats (one fixed and one movable) were implemented to provide the required range of slat depth to model most BLs. This system only involves slat movement to change the BL, which is very useful for automatic wind tunnel testing of tall buildings. The system was validated in phase III by conducting experimental wind tunnel testingof the system and comparing the resulting flow field with the target BL fields considering two length scales typically used for wind tunnel testing. A very good match was obtained for all wind field characteristics which confirms accuracy of the system.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼