RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        The epoxy resin system: function and role of curing agents

        Aziz Tariq,Haq Fazal,Farid Arshad,Cheng Li,Chuah Lai Fatt,Bokhari Awais,Mubashir Muhammad,Tang Doris Ying Ying,Show Pau Loke 한국탄소학회 2024 Carbon Letters Vol.34 No.1

        Curing agents are critical components of aqueous epoxy resin systems. Unfortunately, its uses and applications are restricted because of its low emulsifying yields. Epoxy resins are frequently used in electrical devices, castings, packaging, adhesive, corrosion resistance, and dip coating. In the presence of curing agents, epoxy resins become rigid and infusible. Eco-friendliness and mechanical functionality have emerged as vulcanization properties. Curing agents are used for surface modification, thermodynamic properties, functional approaches to therapeutic procedures, and recent advances in a variety of fields such as commercial and industrial levels. The curing agent has superior construction and mechanical properties when compared to the commercial one, which suggests that it has the potential for use as the architectural and industrial coatings. The thermal stability of cured products is good due to the presence of the imide group and the hydrogenated phenanthrene ring structure. Over the course of the projection period, it is anticipated that the global market for curing agents will continue to expand at a steady rate. The growth of the market is mainly driven by its expanding range in future applications such as adhesives, composites, construction, electrical, electronics, and wind energy. This review focused on the most recent advancements in curing techniques, emphasizing their thermal and mechanical properties. The review also presents a critical discussion of key aspects and bottleneck or research gap of the application of curing agents in the industrial areas. Similar content being viewed by others Curing agents are critical components of aqueous epoxy resin systems. Unfortunately, its uses and applications are restricted because of its low emulsifying yields. Epoxy resins are frequently used in electrical devices, castings, packaging, adhesive, corrosion resistance, and dip coating. In the presence of curing agents, epoxy resins become rigid and infusible. Eco-friendliness and mechanical functionality have emerged as vulcanization properties. Curing agents are used for surface modification, thermodynamic properties, functional approaches to therapeutic procedures, and recent advances in a variety of fields such as commercial and industrial levels. The curing agent has superior construction and mechanical properties when compared to the commercial one, which suggests that it has the potential for use as the architectural and industrial coatings. The thermal stability of cured products is good due to the presence of the imide group and the hydrogenated phenanthrene ring structure. Over the course of the projection period, it is anticipated that the global market for curing agents will continue to expand at a steady rate. The growth of the market is mainly driven by its expanding range in future applications such as adhesives, composites, construction, electrical, electronics, and wind energy. This review focused on the most recent advancements in curing techniques, emphasizing their thermal and mechanical properties. The review also presents a critical discussion of key aspects and bottleneck or research gap of the application of curing agents in the industrial areas. Similar content being viewed by others

      • KCI등재

        Correction: The epoxy resin system: function and role of curing agents

        Aziz Tariq,Haq Fazal,Farid Arshad,Chengliang Xiao,Chuah Lai Fatt,Bokhari Awais,Mubashir Muhammad,Tang Doris Ying Ying,Show Pau Loke 한국탄소학회 2024 Carbon Letters Vol.34 No.3

        Curing agents are critical components of aqueous epoxy resin systems. Unfortunately, its uses and applications are restricted because of its low emulsifying yields. Epoxy resins are frequently used in electrical devices, castings, packaging, adhesive, corrosion resistance, and dip coating. In the presence of curing agents, epoxy resins become rigid and infusible. Eco-friendliness and mechanical functionality have emerged as vulcanization properties. Curing agents are used for surface modification, thermodynamic properties, functional approaches to therapeutic procedures, and recent advances in a variety of fields such as commercial and industrial levels. The curing agent has superior construction and mechanical properties when compared to the commercial one, which suggests that it has the potential for use as the architectural and industrial coatings. The thermal stability of cured products is good due to the presence of the imide group and the hydrogenated phenanthrene ring structure. Over the course of the projection period, it is anticipated that the global market for curing agents will continue to expand at a steady rate. The growth of the market is mainly driven by its expanding range in future applications such as adhesives, composites, construction, electrical, electronics, and wind energy. This review focused on the most recent advancements in curing techniques, emphasizing their thermal and mechanical properties. The review also presents a critical discussion of key aspects and bottleneck or research gap of the application of curing agents in the industrial areas.

      • KCI등재

        An Optimal Asset Allocation Strategy for Suppliers Paying Carbon Tax in the Competitive Electricity Market

        Waqas Ahmad Wattoo,Ghulam Sarwar Kaloi,Muhammad Yousif,Mazhar Hussain Baloch,Baqar Ali Zardar,Jehangir Arshad,Ghulam Farid,Talha Younas,Sohaib Tahir 대한전기학회 2020 Journal of Electrical Engineering & Technology Vol.15 No.1

        The escalating energy demand across the globe has intensifed the electricity production. Owing to the unavailability of the reliable techniques for electricity storage for a long duration, it is consumed immediately after its production. Therefore, electricity markets can’t be handled like the conventional stock markets. Power companies are facing immense price and delivery risks owing to the increasing competition in the electricity markets. As a result, risk management is the fundamental concern to be addressed in order to achieve the optimum proft targets. Consequently, the power generation organizations need to allocate their generation in bilateral contracts and spot market. For this purpose, an optimal theory of portfolio selection is proposed in this study for electricity generation by forming a reliable prototype and applying the proposed scheme to obtain the suitable outcomes. The Paris Accord on environmental safety from carbon dioxide and NOx gases is especially considered during the modeling of the proposed technique. The credibility of the proposed scheme is validated by using the real-time market data from the PJM market. Various risk-return tradeofs are implemented, and their corresponding solutions are acquired for portfolio optimization as corroborated by the results. The suggested technique is found reliable and adequate for the carbon tax paying suppliers around the world for allocating their respective generation based on the demand of the consumers.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼