RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Load balancing in 5G heterogeneous networks based on automatic weight function

        Gures Emre,Shayea Ibraheem,Saad Sawsan Ali,Ergen Mustafa,El-Saleh Ayman A,Ahmed Nada M.O. Sid,Alnakhli Mohammad 한국통신학회 2023 ICT Express Vol.9 No.6

        Load balancing is a major challenge in heterogeneous networks (HetNets) consisting of 5G and 6G ultra-dense small cells with long-term evaluation advanced (LTE-A) networks. A key factor in achieving efficient load balancing during user mobility is creating appropriate optimisation for handover control parameters (HCP). This paper proposes a coordinated load balancing algorithm for LTE-A/fifth generation (5G) HetNets. The algorithm automatically optimises HCP settings for a given user based on three bounded functions (the signal-to-interference-plus-noise ratio (SINR) of the user equipment (UE), the number of physical resource blocks (PRBs) per UE and the UE’s speed) as well as their automatic weight levels. A two-step target cell determination strategy is implemented according to the cell load level and RSRP criteria, ensuring that users are handed over to low-loaded target cells. A new HO procedure that considers the pilot signal power is also proposed, which includes the number of PRBs per UE and the RSRP. Cells with freer PRBs are prioritised in user association to provide load balance and enhanced throughput. The proposed load balancing algorithm is compared with five other load balancing algorithms selected from the literature. The simulation results reveal that under various mobile speed scenarios, the proposed load balancing scheme enhances network performance in terms of load level, throughput, spectral efficiency and call dropping ratio (CDR).

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼