RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 무료
      • 기관 내 무료
      • 유료
      • Secure kNN Query Processing in Untrusted Cloud Environments

        Sunoh Choi,Ghinita, Gabriel,Hyo-Sang Lim,Bertino, Elisa IEEE 2014 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERIN Vol.26 No.11

        <P>Mobile devices with geo-positioning capabilities (e.g., GPS) enable users to access information that is relevant to their present location. Users are interested in querying about points of interest (POI) in their physical proximity, such as restaurants, cafes, ongoing events, etc. Entities specialized in various areas of interest (e.g., certain niche directions in arts, entertainment, travel) gather large amounts of geo-tagged data that appeal to subscribed users. Such data may be sensitive due to their contents. Furthermore, keeping such information up-to-date and relevant to the users is not an easy task, so the owners of such data sets will make the data accessible only to paying customers. Users send their current location as the query parameter, and wish to receive as result the nearest POIs, i.e., nearest-neighbors (NNs). But typical data owners do not have the technical means to support processing queries on a large scale, so they outsource data storage and querying to a cloud service provider. Many such cloud providers exist who offer powerful storage and computational infrastructures at low cost. However, cloud providers are not fully trusted, and typically behave in an honest-but-curious fashion. Specifically, they follow the protocol to answer queries correctly, but they also collect the locations of the POIs and the subscribers for other purposes. Leakage of POI locations can lead to privacy breaches as well as financial losses to the data owners, for whom the POI data set is an important source of revenue. Disclosure of user locations leads to privacy violations and may deter subscribers from using the service altogether. In this paper, we propose a family of techniques that allow processing of NN queries in an untrusted outsourced environment, while at the same time protecting both the POI and querying users' positions. Our techniques rely on mutable order preserving encoding (mOPE), the only secure order-preserving encryption method known to-date. We also provide performance optimizations to decrease the computational cost inherent to processing on encrypted data, and we consider the case of incrementally updating data sets. We present an extensive performance evaluation of our techniques to illustrate their viability in practice.</P>

      • SCOPUS

        Semantics-aware Obfuscation for Location Privacy

        Maria Luisa Damiani,Claudio Silvestri,Elisa Bertino 한국정보과학회 2008 Journal of Computing Science and Engineering Vol.2 No.2

        The increasing availability of personal location data pushed by the widespread use of location-sensing technologies raises concerns with respect to the safeguard of location privacy. To address such concerns location privacy-preserving techniques are being investigated. An important area of application for such techniques is represented by Location Based Services (LBS). Many privacy-preserving techniques designed for LBS are based on the idea of forwarding to the LBS provider obfuscated locations, namely position information at low spatial resolution, in place of actual users' positions. Obfuscation techniques are generally based on the use of geometric methods. In this paper, we argue that such methods can lead to the disclosure of sensitive location information and thus to privacy leaks. We thus propose a novel method which takes into account the semantic context in which users are located. The original contribution of the paper is the introduction of a comprehensive framework consisting of a semantic-aware obfuscation model, a novel algorithm for the generation of obfuscated spaces for which we report results from an experimental evaluation and a reference architecture.

      • SCOPUS

        Semantics-aware Obfuscation for Location Privacy

        Damiani, Maria Luisa,Silvestri, Claudio,Bertino, Elisa Korean Institute of Information Scientists and Eng 2008 Journal of Computing Science and Engineering Vol.2 No.2

        The increasing availability of personal location data pushed by the widespread use of location-sensing technologies raises concerns with respect to the safeguard of location privacy. To address such concerns location privacy-preserving techniques are being investigated. An important area of application for such techniques is represented by Location Based Services (LBS). Many privacy-preserving techniques designed for LBS are based on the idea of forwarding to the LBS provider obfuscated locations, namely position information at low spatial resolution, in place of actual users' positions. Obfuscation techniques are generally based on the use of geometric methods. In this paper, we argue that such methods can lead to the disclosure of sensitive location information and thus to privacy leaks. We thus propose a novel method which takes into account the semantic context in which users are located. The original contribution of the paper is the introduction of a comprehensive framework consisting of a semantic-aware obfuscation model, a novel algorithm for the generation of obfuscated spaces for which we report results from an experimental evaluation and reference architecture.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼